Skip to main content

Abstract

Cellular stresses modulate intracellular signaling pathways that control almost all aspects of cell physiology and metabolism. Heat shock genes system activation in response to various forms of stress is extremely rapid and, hence, represents an excellent model for investigation of gene regulation at all levels. In Drosophila it is possible to detect local chromatin decondensation leading to puffs formation in salivary glands polytene chromosomes within the first 1–2 min after HS challenge. Fast activation of Hsp genes is apparently necessary for cell survival under stress conditions and for cross-protection against unrelated stresses. Activation of HS system is rapidly initiated at all stages of genetic information realization including transcription, export of mRNA and translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Åkerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    PubMed  PubMed Central  Google Scholar 

  • Amin J, Nestril R, Schiller P, Dreano M, Voellmy R (1987) Organization of the Drosophila melanogaster hsp70 heat shock regulation unit. Mol Cell Biol 7:1055–1062

    PubMed  CAS  PubMed Central  Google Scholar 

  • Amin J, Ananthan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8:3761–3769

    PubMed  CAS  PubMed Central  Google Scholar 

  • Amin J, Fernandez M, Ananthan J, Lis JT, Voellmy R (1994) Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro. J Biol Chem 269:4804–4811

    PubMed  CAS  Google Scholar 

  • Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524

    PubMed  CAS  Google Scholar 

  • Anckar J, Sistonen L (2007) Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv Exp Med Biol 594:78–88

    PubMed  Google Scholar 

  • Baler R, Zou J, Voellmy R (1996) Evidence for a role of Hsp70 in the regulation of the heat shock response in mammalian cells. Cell Stress Chaperones 1:33–39

    PubMed  CAS  PubMed Central  Google Scholar 

  • Belikov SV, Karpov VL (1996) Mapping protein-DNA interaction with CIS-DDP: chromatine structure of promoter region of D. melanogaster HSP70 gene. Biochem Mol Biol Int 38:997–1002

    PubMed  CAS  Google Scholar 

  • Bevilacqua A, Fiorenza MT, Mangia F (1997) Developmental activation of an episomic HSP70 gene promoter in two-cells mouse embryos by transcription factor Sp1. Nucleic Acids Res 25:1333–1338

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bienz M, Pelham HRB (1986) Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter. Cell 45:753–760

    PubMed  CAS  Google Scholar 

  • Bonner JJ, Pardue ML (1977) Polytene chromosome puffing and in situ hybridization measure different aspects of RNA metabolism. Cell 12:227–234

    PubMed  CAS  Google Scholar 

  • Bonner JJ, Berninger M, Pardue ML (1978) Transcription of polytene chromosomes and of the mitochondrial genome in Drosophila melanogaster. Cold Spring Harb Symp Quant Biol 42:803–814

    PubMed  CAS  Google Scholar 

  • Bonner JJ, Carlson T, Fackenthal DL, Paddock D, Storey K, Lea K (2000) Complex regulation of the yeast heat shock transcription factor. Mol Biol Cell 11:1739–1751

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen Y, Brandizzi F (2013) IRE1: ER stress sensor and cell fate executor. Trends Cell Biol 23:547–555

    PubMed  CAS  Google Scholar 

  • Cheney CM, Shearn A (1983) Developmental regulation of Drosophila imaginal disc proteins: synthesis of a heat shock protein under non-heat-shock conditions. Dev Biol 95:325–330

    PubMed  CAS  Google Scholar 

  • Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK (1996) Sequential phosphorylation by mitogen-activated kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271:30847–30857

    PubMed  CAS  Google Scholar 

  • Clos J, Rabindran S, Wisniewski J, Wu C (1993) Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature 364:252–255

    PubMed  CAS  Google Scholar 

  • Cotto JJ, Morimoto RI (1999) Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors. Biochem Soc Symp 64:105–118

    PubMed  CAS  Google Scholar 

  • Cuesta R, Laroia G, Schneider RJ (2000) Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev 14:1460–1470

    PubMed  CAS  PubMed Central  Google Scholar 

  • de la Cadena SG, Hernández-Fonseca K, Camacho-Arroyo I, Massieu L (2013) Glucose deprivation induces reticulum stress by the PERK pathway and caspase-7- and calpain-mediated caspase-12 activation. Apoptosis 19:414–427

    Google Scholar 

  • Ding XZ, Tsocos GC, Kiang JG (1997) Heat shock factor-1 in heat shock factor-1 gene-transfected human epidermoid A431 cells requires phosphorylation before inducing heat shock protein-70 production. J Clin Invest 99:136–143

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dubois MF, Marshall NF, Nguyen VT, Dacmus GK, Bonnet F et al (1999) Heat shock of HeLa cells inactivates a nuclear protein phosphatase specific for dephosphorylation of the C-terminal domain of RNA polymerase II. Nucleic Acids Res 27:1338–1344

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duncan RF, Cavener DR, Qu S (1995) Heat shock effects on phosphorylation of protein synthesis initiation factor proteins eIF4E and eIF2-alpha in Drosophila. Biochemistry 34:2985–2997

    PubMed  CAS  Google Scholar 

  • Foti DM, Welihinda A, Kaufman RJ, Lee AS (1999) Conservation and divergence of the yeast and mammalian unfolded protein response. J Biol Chem 274:30402–30409

    PubMed  CAS  Google Scholar 

  • Fujimoto M, Hayashida N, Katoh T, Oshima K, Shinkawa T et al (2010) A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol Biol Cell 21:106–116

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gallie DR, Le H, Caldwell C, Tanduay RL, Hoang NX, Browning KS (1997) The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J Biol Chem 272:1046–1053

    PubMed  CAS  Google Scholar 

  • Gallo GJ, Schuetz TJ, Kingston RE (1991) Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae. Mol Cell Biol 11:281–288

    PubMed  CAS  PubMed Central  Google Scholar 

  • Georgel PT (2005) Chromatin potentiation of the hsp70 promoter is linked to GAGA-factor recruitment. Biochem Cell Biol 83:555–565

    PubMed  CAS  Google Scholar 

  • Gonsalves SE, Moses AM, Razak Z, Robert F, Westwood JT (2011) Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster. PLoS One 6:e15934

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guertin MJ, Lis JT (2010) Chromatin landscape dictates HSF binding to target DNA elements. PLoS Genet 6:e1001114

    PubMed  PubMed Central  Google Scholar 

  • Guertin MJ, Lis JT (2013) Mechanisms by which transcription factors gain access to target sequence elements in chromatin. Curr Opin Genet Dev 23:116–123

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guertin MJ, Petesch SJ, Zobeck KL, Min IM, Lis JT (2010) Drosophila heat shock system as a general model to investigate transcriptional regulation. Cold Spring Harb Symp Quant Biol 75:1–9

    PubMed  CAS  Google Scholar 

  • Guettouche T, Boellmann F, Lane WS, Voellmy R (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6:4

    PubMed  PubMed Central  Google Scholar 

  • Hahn JS, Thiele DJ (2004) Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem 279:5169–5176

    PubMed  CAS  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    PubMed  CAS  Google Scholar 

  • Hart C, Zhao K, Laemmli U (1997) The scs’ boundary element: characterization of boundary element-associated factors. Mol Cell Biol 17:999–1009

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hashikawa N, Mizukami Y, Imazu H, Sakurai H (2006) Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation. J Biol Chem 281:3936–3942

    PubMed  CAS  Google Scholar 

  • He B, Meng Y, Mivechi NF (1998) Glycogen synthase kinase 3β and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol Cell Biol 18:6624–6633

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hernández G, Vázquez-Pianzola P, Sierra JM, Rivera-Pomar R (2004) Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA 10:1783–1797

    PubMed  PubMed Central  Google Scholar 

  • Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M et al (2001) Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 20:3800–3810

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huang J, Van der Ploeg LHT (1991) Maturation of polycistronic pre-mRNA in Trypanosoma brucei: analysis of trans-splicing and Poly(A) addition at nascent RNA transcripts from the hsp70 locus. Mol Cell Biol 11:3180–3190

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jacoby DB, Wensink PC (1994) Yolk protein factor 1 is a Drosophila homolog of Ku, the DNA-binding subunit of a DNA-dependent protein kinase from humans. J Biol Chem 269:11484–11491

    PubMed  CAS  Google Scholar 

  • Karpov VL, Preobrazhenskaya OV, Mirzabekov AD (1984) Chromatin structure of hsp70 genes, activated by heat shock: selective removal of histones from the coding region and their absence from the 5′ region. Cell 36:423–431

    PubMed  CAS  Google Scholar 

  • Kiang JG, Gist ID, Tsokos GC (1998) Cytoprotection and regulation of heat shock proteins induced by heat shock in human breast cancer T47-D cells: role of (Ca2+)i and protein kinases. FASEB J 12:1571–1579

    PubMed  CAS  Google Scholar 

  • Kim D, Ouyang H, Yang SH, Nussenzweig A, Burgman P, Li GC (1995) A constitutive heat shock element-binding factor is immunologically identical to the Ku autoantigen. J Biol Chem 270:15277–15284

    PubMed  CAS  Google Scholar 

  • Kinoshita K, Shinka T, Sato Y, Kurahashi H, Kowa H et al (2006) Expression analysis of a mouse orthologue of HSFY, a candidate for the azoospermic factor on the human Y chromosome. J Med Invest 53:117–122

    PubMed  Google Scholar 

  • Korochkin LI, Aleksandrova MA, Bashkirov VN, Trukhacheva AA, Dzitoyeva SG et al (2002) Xenografts of embryonic nerve tissue from Drosophila neuromutants stimulate development of neural homografts in rat brain and block glial scar formation. Tsitologiia 44:1181–1185

    PubMed  CAS  Google Scholar 

  • Kruger C, Benecke BJ (1981) In vitro translation of Drosophila heat-shock and non-heat-shock mRNAs in heterologous and homologous cell-free systems. Cell 23:595–603

    PubMed  CAS  Google Scholar 

  • Lebedeva LA, Nabirochkina EN, Kurshakova MM, Robert F, Krasnov AN et al (2005) Occupancy of the Drosophila hsp70 promoter by a subset of basal transcription factors diminishes upon transcriptional activation. Proc Natl Acad Sci U S A 102:18087–18092

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26:504–510

    PubMed  CAS  Google Scholar 

  • Lee H, Kraus K, Wolfner M, Lis J (1992) DNA sequence requirements for generating paused polymerase at the start of hsp70. Genes Dev 6:284–285

    PubMed  CAS  Google Scholar 

  • Lee C, Li X, Hechmer A, Eisen M, Biggin MD et al (2008a) NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol Cell Biol 28:3290–3300

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee K, Park JY, Yoo W, Gwag T, Lee JW, Byun MW, Choi I (2008b) Overcoming muscle atrophy in a hibernating mammal despite prolonged disuse in dormancy: proteomic and molecular assessment. J Cell Biochem 104:642–656

    PubMed  CAS  Google Scholar 

  • Lerman DN, Feder ME (2005) Naturally occurring transposable elements disrupt hsp70 promoter function in Drosophila melanogaster. Mol Biol Evol 22:776–783

    PubMed  CAS  Google Scholar 

  • Li WW, Hsiung Y, Zhou Y, Roy B, Lee AS (1997) Induction of the mammalian GRP78/BiP gene by Ca2+ depletion and formation of aberrant proteins: activation of the conserved stress-inducible grp core promoter element by the human nuclear factor YY1. Mol Cell Biol 17:54–60

    PubMed  PubMed Central  Google Scholar 

  • Lis JT (2007) Imaging Drosophila gene activation and polymerase pausing in vivo. Nature 450:198–202

    PubMed  CAS  Google Scholar 

  • Loones MT, Rallu M, Mezger V, Morange M (1997) HSP gene expression and HSF2 in mouse development. Cell Mol Life Sci 53:179–190

    PubMed  CAS  Google Scholar 

  • Marchler G, Wu C (2001) Modulation of Drosophila heat shock transcription factor activity by the molecular chaperone DROJ1. EMBO J 20:499–509

    PubMed  CAS  PubMed Central  Google Scholar 

  • Menon V, Thomason DB (1995) Head-down tilt increases rat cardiac muscle eIF2α phosphorylation. Am J Physiol 269:802–804

    Google Scholar 

  • Morgan WD, Williams GT, Morimoto RI, Greene J, Kingston RE, Tjian R (1987) Two transcriptional activators, CCAAT-box-binding transcription factor and heat shock factor, interact with a human HSP70 gene promoter. Mol Cell Biol 7:1129–1138

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mori K, Kawahara T, Yoshida H, Yanagi H, Yura T (1996) Signaling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells 1:803–817

    PubMed  CAS  Google Scholar 

  • Mori K, Ogawa N, Kawahara T, Yanagi H, Yura T (1998) Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in saccharomyces cerevisiae. J Biol Chem 273:9912–9920

    PubMed  CAS  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcription response: cross talk between a family of HSFs, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    PubMed  CAS  Google Scholar 

  • Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (1999) Translational induction of heat shock transcription factor σ-32: evidence for a built-in RNA thermosensor. Genes Dev 13:655–665

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nikolova-Karakashian MN, Rozenova KA (2010) Ceramide in stress response. Adv Exp Med Biol 688:86–108

    PubMed  CAS  Google Scholar 

  • Nussenzweig A, Chen C, da Costa Soares V, Sanchez M, Sokol K et al (1996) Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382:551–555

    PubMed  CAS  Google Scholar 

  • Omelina ES, Baricheva EM, Oshchepkov DY, Merkulova TI (2011) Analysis and recognition of the GAGA transcription factor binding sites in Drosophila genes. Comput Biol Chem 35:363–370

    PubMed  CAS  Google Scholar 

  • Orosz A, Wisniewski J, Wu C (1996) Regulation of Drosophila heat shock factor trimerisation: global sequence requirements and independence of nuclear localization. Mol Cell Biol 16:7018–7030

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ostling P, Björk JK, Roos-Mattjus P, Mezger V, Sistonen L (2007) Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282:7077–7086

    PubMed  Google Scholar 

  • Papaconstantinou M, Wu Y, Pretorius HN, Singh N, Gianfelice G et al (2005) Menin is a regulator of the stress response in Drosophila melanogaster. Mol Cell Biol 25:9960–9972

    PubMed  CAS  PubMed Central  Google Scholar 

  • Park JM, Werner J, Kim JM, Lis JT, Kim YJ (2001) Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol Cell 8:9–19

    PubMed  CAS  Google Scholar 

  • Peng W, Zhang Y, Zheng M, Cheng H, Zhu W et al (2010) Cardioprotection by CaMKII-deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circ Res 106:102–110

    PubMed  CAS  PubMed Central  Google Scholar 

  • Petesch S, Lis J (2012) Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol Cell 45:64–74

    Google Scholar 

  • Petesch SJ, Lis JT (2008) Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134:74–84

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pirkkala L, Alastalo TP, Zuo X, Benjamin IJ, Sistonen L (2000) Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol Cell Biol 20:2670–2675

    Google Scholar 

  • Place RF, Noonan EJ (2014) Non-coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones 19:159–172

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230–234

    PubMed  CAS  Google Scholar 

  • Roy B, Lee AS (1999) The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res 27:1437–1443

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roy B, Li WW, Lee AS (1996) Calcium-sensitive transcriptional activation of the proximal CCAAT regulatory element of the grp78/BiP promoter by the human nuclear factor CBF/NF-Y. J Biol Chem 271:28995–29002

    PubMed  CAS  Google Scholar 

  • Rubtsova MP, Sizova DV, Dmitriev SE, Ivanov DS, Prassolov VS, Shatsky IN (2003) Distinctive properties of the 5′-untranslated region of human hsp70 mRNA. J Biol Chem 278:22350–22356

    PubMed  CAS  Google Scholar 

  • Segal G, Ron EZ (1998) Regulation of heat-shock response in bacteria. Ann N Y Acad Sci 851:147–151

    PubMed  CAS  Google Scholar 

  • Shalgi R, Hurt JA, Krykbaeva I, Taipale M, Lindquist S, Burge CB (2013) Widespread regulation of translation by elongation pausing in heat shock. Mol Cell 49:439–452

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shamovsky I, Nudler E (2009) Isolation and characterization of the heat shock RNA 1. Methods Mol Biol 540:265–279

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E (2006) RNA-mediated response to heat shock in mammalian cells. Nature 440:556–560

    PubMed  CAS  Google Scholar 

  • Sheikh MS, Fornace AJ (1999) Regulation of translation following stress. Oncogene 18:6421–6428

    Google Scholar 

  • Shi Y, Kroeger PE, Morimoto R (1995) The carboxyl-terminal transcription domain of heat shock factor 1 is negatively regulated and stress responsive. Mol Cell Biol 15:4309–4318

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654–656

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shinka T, Sato Y, Chen G, Naroda T, Kinoshita K et al (2004) Molecular characterization of heat shock-like factor encoded on the human Y chromosome, and implications for male infertility. Biol Reprod 71:297–306

    PubMed  CAS  Google Scholar 

  • Shopland LS, Hirayoshi K, Fernandes M, Lis JT (1995) HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA-factor, TFIID, and RNA-polymerase II binding sites. Genes Dev 9:2756–2769

    PubMed  CAS  Google Scholar 

  • Simioni MB, De Thonel A, Hammann A, Joly AL, Bossis G et al (2009) Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene 28:3332–3344

    Google Scholar 

  • Singh IS, He JR, Calderwood S, Hasday JD (2002) A high affinity HSF-1 binding site in the 5′-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor. J Biol Chem 277:4981–4988

    PubMed  CAS  Google Scholar 

  • Solomon JM, Rossi JM, Golic K, McGarry T, Lindquist S (1991) Changes in Hsp70 alter thermotolerance and heat-shock regulation in Drosophila. New Biol 3:1106–1120

    PubMed  CAS  Google Scholar 

  • Sørensen JG, Nielsen MM, Kruhøffer M, Justesen J, Loeschcke V (2005) Full genome gene expression analysis of the heat stress response in Drosophila melanogaster. Cell Stress Chaperones 10:312–328

    PubMed  PubMed Central  Google Scholar 

  • Stephanou A, Isenberg DA, Nakajima K, Latchman DS (1999) Signal transducer and activator of transcription-1 and heat shock factor-1 interact and activate the transcription of the HSP70 and HSP90β promoters. J Biol Chem 274:1723–1728

    PubMed  CAS  Google Scholar 

  • Tanabe M, Sasai N, Nagata K, Liu XD, Liu PC et al (1999) The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J Biol Chem 274:27845–27856

    PubMed  CAS  Google Scholar 

  • Tang D, Xie Y, Zhao M, Stevenson MA, Calderwood SK (2001) Repression of the HSP70B promoter by NFIL6, Ku70, and MAPK involves three complementary mechanisms. Biochem Biophys Res Commun 280:280–285

    PubMed  CAS  Google Scholar 

  • Thomas SR, Lengyel JA (1986) Ecdysteroid-regulated heat-shock gene expression during Drosophila melanogaster development. Dev Biol 115:434–438

    PubMed  CAS  Google Scholar 

  • Tian S, Haney RA, Feder ME (2010) Phylogeny disambiguates the evolution of heat-shock cis-regulatory elements in Drosophila. PLoS One 5:e10669

    PubMed  PubMed Central  Google Scholar 

  • Tsukiyama T, Becker PB, Wu C (1994) ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367:525–532

    PubMed  CAS  Google Scholar 

  • Turturici G, Geraci F, Candela ME, Cossu G, Giudice G, Sconzo G (2009) Hsp70 is required for optimal cell proliferation in mouse A6 mesoangioblast stem cells. Biochem J 421:193–200

    PubMed  CAS  Google Scholar 

  • Venetianer A, Marie-Francoise D, Nguyen VT, Bellier S, Seo SJ, Bensaud O (1995) Phosphorylation state of the RNA polymerase II C-terminal domain (CTD) in heat shocked cells. Possible involvement of the stress-activated mitogen-activated protein (MAP) kinases. Eur J Biochem 233:83–92

    PubMed  CAS  Google Scholar 

  • Vera M, Pani B, Griffiths LA, Muchardt C, Abbott CM, Singer RH, Nudler E (2014) The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. Elife 3:e03164

    Google Scholar 

  • Vogel JL, Parsell DA, Lindquist S (1995) Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation. Curr Biol 5:306–317

    PubMed  CAS  Google Scholar 

  • Vries RG, Flynn A, Patel JC, Wang X, Denton RM, Proud CG (1997) Heat shock increases the association of binding protein-1 with initiation factor 4E. J Biol Chem 272:32779–32784

    PubMed  CAS  Google Scholar 

  • Wang G, Ying Z, Jin X, Tu N, Zhang Y et al (2004a) Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 38:66–80

    PubMed  Google Scholar 

  • Wang X, Grammatikakis N, Siganou A, Stevenson MA, Calderwood SK (2004) Interactions between extracellular signal-regulated protein kinase 1, 14-3-3epsilon, and heat shock factor 1 during stress. J Biol Chem 279:49460–4946

    PubMed  CAS  Google Scholar 

  • Wells GB, Dickson RC, Lester RL (1998) Heat-induced elevation of ceramide in Saccharomyces cerevisiae via de novo synthesis. J Biol Chem 273:7235–7243

    PubMed  CAS  Google Scholar 

  • Westerheide SD, Anckar J, Stevens SM, Lea Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066

    PubMed  CAS  PubMed Central  Google Scholar 

  • Westwood JT, Wu C (1993) Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol Cell Biol 13:3481–3486

    PubMed  CAS  PubMed Central  Google Scholar 

  • Westwood JT, Clos J, Wu C (1991) Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353:822–827

    PubMed  CAS  Google Scholar 

  • Wilkins RC, Lis JT (1997) Dynamics of potentiation and activation: GAGA factor and its role in heat shock gene regulation. Nucleic Acids Res 25:3963–3968

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    PubMed  CAS  Google Scholar 

  • Wu CH, Yamaguchi Y, Benjamin LR, Horvat-Gordon M, Washinsky J et al (2003) NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev 17:1402–1414

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamamoto A, Mizukami Y, Sakurai H (2005) Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem 280:11911–11919

    PubMed  CAS  Google Scholar 

  • Yang SH, Nussenzweig A, Li L, Kim D, Ouyang H et al (1996) Modulation of thermal induction of hsp70 expression by Ku autoantigen or its individual subunits. Mol Cell Biol 16:3799–3806

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yao J, Munson KM, Webb WW, Lis JT (2006) Dynamics of heat shock factor association with native gene loci in living cells. Nature 442:1050–1053

    PubMed  CAS  Google Scholar 

  • Yueh A, Schneider RJ (2000) Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes Dev 14:414–421

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang M, Buckley D, Lavoi KP, Buckley AR, Blake MJ (1998) Heat-induced proteolysis of HSF causes premature deactivation of heat shock response in Nb2 lymphoma cells. Cell Stress Chaperones 3:57–66

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang M, Blake MJ, Gout PW, Buckley DJ, Buckley AR (1999) Proteolysis of heat shock transcription factor is associated with apoptosis in rat Nb2 lymphoma cells. Cell Growth Differ 10:759–767

    PubMed  CAS  Google Scholar 

  • Zimarino V, Tsai C, Wu C (1990) Complex modes of heat shock factor activation. Mol Cell Biol 10:752–759

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Evgen’ev, M.B., Garbuz, D.G., Zatsepina, O.G. (2014). Regulation of Heat Shock Genes Expression. In: Heat Shock Proteins and Whole Body Adaptation to Extreme Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9235-6_3

Download citation

Publish with us

Policies and ethics