Skip to main content

Submerged Fermentation of Medicinal Fungus Cordyceps sinensis for Production of Biologically Active Mycelial Biomass and Exopolysaccharides

  • Chapter
  • First Online:
Production of Biomass and Bioactive Compounds Using Bioreactor Technology

Abstract

Cordyceps (Ophiocordyceps) sinensis, the Chinese caterpillar fungus or Cordyceps in brief, is an important medicinal fungus in Chinese herbal medicine with a wide range of health benefits and bioactivities. Because wild C. sinensis fungus (in the form of insect caterpillar-fungal fruiting body complex) is very expensive and rare in nature, mycelial fermentation has become the main source of C. sinensis fungal materials. Liquid or submerged fermentation of fungal mycelia has been widely exploited for large-scale production of C. sinensis mycelium biomass and exopolysaccharides (EPS). This chapter will give a brief introduction of the biological characteristics of the C. sinensis fungus and its medicinal functions and applications, and then mainly review the conditions and characteristics of C. sinensis mycelial culture for the production of mycelial biomass and EPS in shake-flasks and stirred-tank fermenters. In addition to the relevant studies reported by other research groups, this chapter will summarize the major findings from the studies by our own group with the Cs-HK1 fungus, including the fluid transport properties and the process parameters from small laboratory to large-scale industrial fermenters, the problems in separation and recovery of mycelial biomass and EPS from the viscous fermentation liquid, and the isolation, purification and molecular properties of polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cs:

Cordyceps sinensis

DO:

Dissolved oxygen

EPS:

Exopolysaccharide

MW:

Molecular weight

MWCO:

Molecular weight cut-off

PE:

Peptone

PS:

Polysaccharide

PSP:

Polysaccharide-protein complex

TKN:

Total Kjeldahl nitrogen

YE:

Yeast extract

References

  1. Stachowiak B, Reguła J (2012) Health-promoting potential of edible macromycetes under special consideration of polysaccharides: a review. Eur Food Res Technol 234:369–380

    Article  CAS  Google Scholar 

  2. Ren L, Perera C, Hemar Y (2012) Antitumor activity of mushroom polysaccharides: a review. Food Funct 3:1118–1130

    Article  PubMed  CAS  Google Scholar 

  3. Ooi VEC, Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 7:715–729

    Article  PubMed  CAS  Google Scholar 

  4. Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274

    Article  PubMed  CAS  Google Scholar 

  5. Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89:1323–1332

    Article  PubMed  CAS  Google Scholar 

  6. Zhong JJ, Tang YJ (2004) Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. Adv Biochem Eng Biotechnol 87:25–59

    PubMed  CAS  Google Scholar 

  7. Seviour R, McNeil B, Fazenda ML, Harvey LM (2011) Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol 31:170–185

    Article  PubMed  CAS  Google Scholar 

  8. Zhang Y, Li E, Wang C, Li Y, Liu X (2012) Ophiocordyceps sinensis, the flagship fungus of China: terminology, life strategy and ecology. Mycol 3:2–10

    Google Scholar 

  9. Chen PX, Wang S, Nie S, Marcone M (2013) Properties of Cordyceps sinensis: a review. J Funct Foods 5:550–569

    Article  CAS  Google Scholar 

  10. Holliday J, Cleaver M (2008) Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes). A review. Int J Med Mushrooms 10:219–234

    Article  CAS  Google Scholar 

  11. Shashidhar MG, Giridhar P, Sankar KU, Manohar B (2013) Bioactive principles from Cordyceps sinensis: a potent food supplement – a review. J Funct Foods 5:1013–1030

    Article  CAS  Google Scholar 

  12. Shrestha UB, Bawa KS (2013) Trade, harvest, and conservation of caterpillar fungus (Ophiocordyceps sinensis) in the Himalayas. Biol Cons 159:514–520

    Article  Google Scholar 

  13. Zhu JS, Halpern GM, Jones K (1998) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis. J Alter Comp Med 4:289–303 (Part I); 4: 429-457 (Part II)

    Article  CAS  Google Scholar 

  14. Li SP, Tsim KWK (2004) The biological and pharmacological properties of Cordyceps sinensis, a traditional Chinese medicine that has broad clinical applications. In: Packer L, Ong CN, Halliwell B (eds) Herbal and traditional medicine: molecular aspects of health. Marcel Dekker, New York, pp 657–683

    Google Scholar 

  15. Lo HC, Hsieh C, Lin FY, Hsu TH (2013) A systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in Dong Chong Xia Cao and related bioactive ingredients. J Trad Comp Med 3:16–32

    Google Scholar 

  16. Kim HO, Yun JW (2005) A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures. J Appl Microbiol 99:728–738

    Article  PubMed  CAS  Google Scholar 

  17. Cha SH, Lim JS, Yoon CS, Koh JH, Chang HI, Kim SW (2007) Production of mycelia and exo-biopolymer from molasses by Cordyceps sinensis 16 in submerged culture. Bioresour Technol 98:165–168

    Article  PubMed  CAS  Google Scholar 

  18. Paterson RRM (2008) Cordyceps – a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochem 69:1469–1495

    Article  CAS  Google Scholar 

  19. Winkler D (2010) Cordyceps sinensis – a previous parasitic fungus infecting Tibet. Field Mycol 11:60–67

    Article  Google Scholar 

  20. Li Y, Wang XL, Jiao L, Jiang Y, Li H, Jiang SP, Lhosumtseiring N, Fu SZ, Dong CH, Zhan Y, Yao YJ (2011) A survey of the geographic distribution of Ophiocordyceps sinensis. J Microbiol 49:913–919

    Article  PubMed  Google Scholar 

  21. Yin DH, Tang XM (1995) Progresses of cultivation research of Cordyceps sinensis. China J Chin Mat Med 20:707–709

    CAS  Google Scholar 

  22. Jiang Y, Yao YJ (2002) Names related to Cordyceps sinensis anamorph. Mycotaxon 84:245–254

    Google Scholar 

  23. Li SP, Li P, Dong TTX, Tsim KWK (2001) Determination of nucleosides in natural Cordyceps sinensis and cultured Cordyceps mycelia by capillary electrophoresis. Electrophoresis 22:144–150

    Article  PubMed  CAS  Google Scholar 

  24. Li SP, Su ZR, Dong TTX, Tsim KWK (2002) The fruiting body and its caterpillar host of Cordyceps sinensis show close resemblance in main constituents and anti-oxidation activity. Phytomedicine 9:319–324

    Article  PubMed  CAS  Google Scholar 

  25. Hsu TH, Shiao LH, Hsieh C, Chang DM (2002) A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom Dong Chong Xia Cao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chem 78:463–469

    Article  CAS  Google Scholar 

  26. Moore D (1998) Fungal morphogenesis. Cambridge University Press, New York

    Book  Google Scholar 

  27. Griffin DH (1994) Fungal physiology. Wiley-Liss, New York

    Google Scholar 

  28. Stanbury PF, Whitaker A, Hall SJ (1995) Principles of fermentation technology, 2nd edn. Pergamon, Tarrytown

    Google Scholar 

  29. Hsieh CY, Tsai MJ, Hsu TH, Chang DM, Lo CT (2005) Medium optimization for polysaccharide production of Cordyceps sinensis. Appl Biochem Biotech 120:145–157

    Article  CAS  Google Scholar 

  30. Dong CH, Yao YJ (2005) Nutritional requirements of mycelial growth of Cordyceps sinensis in submerged culture. J Appl Microbiol 99:483–492

    Article  PubMed  CAS  Google Scholar 

  31. Quan W, Wang J, Du S, Liu G (2007) Studies on the production of exopolysaccharides by liquid culture of Cordyceps sinensis. Fajiao Keji Tongxun 36:2–4 (in Chinese)

    Google Scholar 

  32. Lang J, Qi X, Hou Y, Zhao S, Jiang G (2009) Production of exopolysaccharides by Cordyceps sinensis in liquid culture. J Dalian Polytech Univ 28:107–110 (in Chinese)

    CAS  Google Scholar 

  33. Wu C, Chen Y, Hao Y (2009) Production of mycelia and polysaccharides by liquid fermentation of Cordyceps sinensis. Food Sci 30:171–174 (in Chinese)

    Google Scholar 

  34. Choi JW, Ra KS, Kim SY, Yoon TJ, Yu KW, Shin KS, Lee SP, Suh HJ (2010) Enhancement of anti-complementary and radical scavenging activities in the submerged culture of Cordyceps sinensis by addition of citrus peel. Bioresour Technol 101:6028–6034

    Article  PubMed  CAS  Google Scholar 

  35. Wang XL, Liu GQ, Zhu CY, Kuang SM (2011) Enhanced production of mycelial biomass and extracellular polysaccharides in caterpillar-shaped medicinal mushroom Cordyceps sinensis CS001 by the addition of palmitic acid. J Med Plant Res 5:2873–2878

    CAS  Google Scholar 

  36. Park JP, Kim SW, Hwang HJ, Cho YJ, Yun HW (2002) Stimulatory effect of plant oils and fatty acids on the exo-biopolymer production in Cordyceps militaris. Enzyme Microb Tech 31:250–255

    Article  CAS  Google Scholar 

  37. Oh JY, Cho EJ, Nam SH, Choi JW, Yun JW (2007) Production of polysaccharide-peptide complexes by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala. Process Biochem 42:352–362

    Article  CAS  Google Scholar 

  38. Mao XB, Zhong JJ (2006) Significant effect of NH4+ on cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Enzyme Microb Tech 38:343–350

    Article  CAS  Google Scholar 

  39. Holliday J, Cleaver M (2004) On the trail of the yak ancient Cordyceps in the modern world. http://www.pharmaceuticalmushrooms.nwbotanicals.org/lexicon/cordyceps

  40. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531

    Article  CAS  Google Scholar 

  41. Xiao JH, Chen DX, Xiao Y, Liu JW, Kiu ZL, Wan WH, Fang N, Tan BB, Liang XQ, Liu AY (2004) Optimization of submerged culture conditions for mycelial polysaccharide production in Cordyceps pruinosa. Process Biochem 39:2241–2247

    Article  CAS  Google Scholar 

  42. Leung PH, Zhang QX, Wu JY (2006) Mycelium cultivation, chemical composition and antitumor activity of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. J Appl Microbiol 101:275–283

    Article  PubMed  CAS  Google Scholar 

  43. Zhang QX, Wu JY, Hu ZD, Li D (2004) Induction of HL-60 apoptosis by ethyl acetate extract of Cordyceps sinensis fungal mycelium. Life Sci 75(24):2911–2919

    Article  PubMed  CAS  Google Scholar 

  44. Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall PTR, Englewood Cliffs

    Google Scholar 

  45. Sinha J, Bae JT, Park JP, Kim KH, Song CH, Yun JW (2001) Changes in morphology of Paecilomyces japonica and their effect on broth rheology during production of exo-biopolymers. Appl Microbiol Biotechnol 56:88–92

    Article  PubMed  CAS  Google Scholar 

  46. Richard A, Margaritis A (2002) Production and mass transfer characteristics of non-Newtonian biopolymers for biomedical applications. Crit Rev Biotechnol 22:355–374

    Article  PubMed  CAS  Google Scholar 

  47. Wu JY, Leung PH, Wang WQ, Xu CP (2014) Mycelial fermentation characteristics and anti-fatigue activities of a Cordyceps sinensis fungus Cs-HK1. Int J Med Mushrooms 16:105–114

    Google Scholar 

  48. Yan JK, Wang WQ, Wu JY (2014) Recent advances in Cordyceps sinensis polysaccharides: mycelial fermentation, isolation, structure, and bioactivities: a review. J Funct Foods 6:33–37

    Google Scholar 

  49. Nie SP, Cui SW, Xie M, Phillips AO, Phillips GO (2013) Bioactive polysaccharides from Cordyceps sinensis: isolation, structure features and bioactivities. Bioact Carbohyd Diet Fiber 1:38–52

    Article  CAS  Google Scholar 

  50. Xiao JH (2008) Current status and ponderation on preparations and chemical structures of polysaccharide in fungi of Cordyceps (Fr.) Link. Chin Tradit Herb Drugs 39:454–460

    CAS  Google Scholar 

  51. Zhao J, Xie J, Wang LY, Li SP (2013) Advanced development in chemical analysis of Cordyceps. J Pharmaceut Biomed Anal 87:271–289

    Article  Google Scholar 

  52. Zhong S, Pan HJ, Fan LF, Lv G, Wu Y, Parmeswaran B, Pandey A, Soccol CR (2009) Advances in research of polysaccharides in Cordyceps species. Food Technol Biotechnol 47:304–312

    CAS  Google Scholar 

  53. Huang QL, Siu KC, Wang WQ, Cheung YC, Wu JY (2013) Fractionation, characterization and antioxidant activity of exopolysaccharides from fermentation broth of a Cordyceps sinensis fungus. Process Biochem 48:380–386

    Article  CAS  Google Scholar 

  54. Cui SW (2005) Structural analysis of polysaccharides. In: Cui SW (ed) Food carbohydrates: chemistry, physical properties and applications, 1st edn. CRC Press, Boca Raton

    Chapter  Google Scholar 

  55. Nie SP, Xie MY (2011) A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocoll 25:144–149

    Article  CAS  Google Scholar 

  56. Zhang M, Cui S, Cheung P, Wang Q (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Tech 18:4–19

    Article  Google Scholar 

  57. Yan JK, Wang WQ, Li L, Wu JY (2011) Physiochemical properties and antitumor activities of two α-glucans isolated from hot water and alkaline extracts of Cordyceps (Cs-HK1) fungal mycelia. Carbohydr Polym 85:753–758

    Article  CAS  Google Scholar 

  58. Yan JK, Li L, Wang ZM, Wu JY (2010) Structural elucidation of an exopolysaccharide form mycelial fermentation of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. Carbohydr Polym 79:125–130

    Article  CAS  Google Scholar 

  59. Wang ZM, Peng X, Lee KLD, Tang JC, Cheung PCK, Wu JY (2011) Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem 125:637–643

    Article  CAS  Google Scholar 

  60. Chen S, Siu KC, Wang WQ, Liu XX, Wu JY (2013) Structure and antioxidant activity of a novel poly-N-acetylhexosamine produced by a medicinal fungus. Carbohydr Polym 94:332–338

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Hong Kong Government UGC (GRF Projects PolyU 5036/10P and PolyU 5033/11P) and The Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Yong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yan, JK., Wu, JY. (2014). Submerged Fermentation of Medicinal Fungus Cordyceps sinensis for Production of Biologically Active Mycelial Biomass and Exopolysaccharides. In: Paek, KY., Murthy, H., Zhong, JJ. (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_5

Download citation

Publish with us

Policies and ethics