Skip to main content

Production of Carotenoids Using Microalgae Cultivated in Photobioreactors

  • Chapter
  • First Online:
Production of Biomass and Bioactive Compounds Using Bioreactor Technology

Abstract

Carotenoids comprise a diverse group of natural biomolecules with a plethora of beneficial effects. These compounds include potent bioantioxidants, provitamins, and safe colourants that are in high demand by pharmaceutical, cosmetic and food industries. A few species of unicellular algae (called carotenogenic microalgae ) mainly the representatives of Chlorophyta, are among the richest biological source of carotenoids such as β-carotene and astaxanthin . This chapter covers the mass cultivation of the microalgae in closed systems (photobioreactors) for the production of value-added carotenoids. The biochemistry and regulation of the biosynthes is of secondary carotenoids are considered together with the biotechnology of most important carotenogenic microalgae species. Special attention is paid to the real-time optical monitoring of carotenoid accumulation in microalgal cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Car:

Carotenoid(s)

OB :

Oil bodies

PAR:

Photosynthetically active radiation

PBR :

Photobioreactor(s)

PSA:

Photosynthetic apparatus

PTOX:

Plastidial terminal oxidase

ROS :

Reactive oxygen species

References

  1. Römer S, Fraser P (2005) Recent advances in carotenoid biosynthesis, regulation and manipulation. Planta 221(3):305–308

    PubMed  Google Scholar 

  2. Johnson E, Schroeder W (1995) Microbial carotenoids. Adv Biochem Eng Biotechnol 53:119–178

    Google Scholar 

  3. Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1B. Birkhauser Verlag, Basel, pp 13–62

    Google Scholar 

  4. Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9(6):1101–1118

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Takaichi S (2013) Tetraterpenes: carotenoids. In: Mérillon J-M, Ramawat KG (eds) Natural products. Springer, Berlin, pp 3251–3283. doi:10.1007/978-3-642-22144-6_141

    Google Scholar 

  6. Hiller R (1999) Carotenoids as components of the light-harvesting proteins of eukaryotic algae. In: The photochemistry of carotenoids. Kluwer Academic Publishers, Dordrecht, pp 81–98

    Google Scholar 

  7. Edge R, McGarvey D, Truscott T (1997) The carotenoids as anti-oxidants—a review. J Photochem Photobiol B Biol 41(3):189–200

    CAS  Google Scholar 

  8. Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384(3):240–242

    PubMed  CAS  Google Scholar 

  9. Guerin M, Huntley M, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21(5):210–216

    PubMed  CAS  Google Scholar 

  10. Di Mascio P, Murphy M, Sies H (1991) Antioxidant defense systems: the role of carotenoids, tocopherols, and thiols. Am J Clin Nutr 53(1):194–200

    Google Scholar 

  11. Palozza P, Krinsky N (1992) Antioxidant effects of carotenoids in vivo and in vitro: an overview. In: Packer L (ed) Methods in enzymology. Carotenoids. Part A. Chemistry, quantitation, and antioxidation, vol 213. Acad. Press, San Diego, pp 403–420

    Google Scholar 

  12. Snodderly D (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62(6):1448–1461

    Google Scholar 

  13. Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health‐promoting effects of astaxanthin: a high‐value carotenoid mostly from microalgae. Mol Nutr Food Res 55(1):150–165

    PubMed  CAS  Google Scholar 

  14. Jacques PF (1999) The potential preventive effects of vitamins for cataract and age-related macular degeneration. Int J Vitam Nutr Res 69(3):198–205

    PubMed  CAS  Google Scholar 

  15. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18(4):160–167

    PubMed  CAS  Google Scholar 

  16. Boer L (2013) Biotechnological production of colorants. In: Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 1–39. doi:10.1007/10_2013_241

    Google Scholar 

  17. Anonymous (2010) Socio-economic impact of aquaculture in Canada. Fisheries and Aquaculture Management Fisheries and Oceans Canada, Ottawa

    Google Scholar 

  18. Tyman JHP (1997) The chemistry of some natural colourants. In: Studies in natural products chemistry, volume 20, part F. Elsevier, Amsterdam, pp 719–788, http://dx.doi.org/10.1016/S1572-5995(97)80041-5

    Google Scholar 

  19. Isler O, Rüegg R, Schwieter U (1967) Carotenoids as food colourants. Pure Appl Chem 14(2):245–264

    PubMed  CAS  Google Scholar 

  20. Østerlie M, Bjerkeng B, Liaaen-Jensen S (1999) Accumulation of astaxanthin all-E, 9Z and 13Z geometrical isomers and 3 and 3′ RS optical isomers in rainbow trout (Oncorhynchus mykiss) is selective. J Nutr 129(2):391–398

    PubMed  Google Scholar 

  21. Ben-Amotz A, Levy Y (1996) Bioavailability of a natural isomer mixture compared with synthetic all-trans beta-carotene in human serum. Am J Clin Nutr 63(5):729–734

    PubMed  CAS  Google Scholar 

  22. Del Campo J, García-González M, Guerrero M (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74(6):1163–1174

    PubMed  CAS  Google Scholar 

  23. Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9(4):625–644

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Borowitzka M (2005) Carotenoid production using microorganisms. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Press, Champaign, pp 124–137

    Google Scholar 

  25. Britton G (1985) General carotenoid methods. Methods Enzymol 111:113–149

    PubMed  CAS  Google Scholar 

  26. Young A (1993) Occurrence and distribution of carotenoids in photosynthetic systems. In: Young A, Britton G (eds) Carotenoids in photosynthesis. Chapman and Hall, London, pp 16–71

    Google Scholar 

  27. Goodwin TW (1961) Biosynthesis and function of carotenoids. Annu Rev Plant Physiol 12(1):219–244

    CAS  Google Scholar 

  28. Green B, Durnford D (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Biol 47(1):685–714

    CAS  Google Scholar 

  29. Pérez-Bueno M, Johnson M, Zia A, Ruban A, Horton P (2008) The Lhcb protein and xanthophyll composition of the light harvesting antenna controls the pH-dependency of non-photochemical quenching in Arabidopsis thaliana. FEBS Lett 582(10):1477–1482

    PubMed  Google Scholar 

  30. Ruban A, Berera R, Ilioaia C, van Stokkum I, Kennis J, Pascal A, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450(7169):575–578

    PubMed  CAS  Google Scholar 

  31. Pascal A, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436(7047):134–137

    PubMed  CAS  Google Scholar 

  32. Solovchenko A (2010) Screening pigments: general questions. In: Photoprotection in plants. Springer, Heidelberg Dordrecht, London, New York, pp 9–31

    Google Scholar 

  33. Solovchenko A (2013) Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russ J Plant Physiol 60(1):1–13

    CAS  Google Scholar 

  34. Ye Z-W, Jiang J-G, Wu G-H (2009) Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol Adv 26(4):352–360

    Google Scholar 

  35. Rabbani S, Beyer P, Lintig J, Hugueney P, Kleinig H (1998) Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116(4):1239–1248

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38(2):325–331

    CAS  Google Scholar 

  37. Ben-Amotz A, Shaish A, Avron M (1989) Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol 86:1286–1291

    Google Scholar 

  38. Hu Z, Li Y, Sommerfeld M, Chen F, Hu Q (2008) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43(4):365–376

    CAS  Google Scholar 

  39. Hanagata N, Dubinsky Z (1999) Secondary carotenoid accumulation in Scenedesmus komarekii (Chlorophyceae, Chlorophyta). J Phycol 35(5):960–966

    CAS  Google Scholar 

  40. Hagen C, Braune W, Björn L (1994) Functional aspects of secondary carotenoids in Haematococcus lacustris (Volvocales) III. Action as a sunshade. J Phycol 30(2):241–248

    CAS  Google Scholar 

  41. Bidigare R, Ondrusek M, Kennicutt M, Iturriaga R, Harvey H, Hoham R, Macko S (1993) Evidence a photoprotective for secondary carotenoids of snow algae. J Phycol 29(4):427–434

    CAS  Google Scholar 

  42. Hagen C, Braune W, Greulich F (1993) Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales) IV: protection from photodynamic damage. J Photochem Photobiol B 20(2–3):153–160

    CAS  Google Scholar 

  43. Solovchenko A, Merzlyak M (2008) Screening of visible and UV radiation as a photoprotective mechanism in plants. Russ J Plant Physiol 55(6):719–737

    CAS  Google Scholar 

  44. Collins AM, Jones HDT, Han D, Hu Q, Beechem TE, Timlin JA (2011) Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS One 6(9):e24302

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Li J, Zhu D, Niu J, Shen S, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29(6):568–574

    PubMed  CAS  Google Scholar 

  46. Peled E, Pick U, Zarka A, Shimoni E, Leu S, Boussiba S (2012) Light-induced oil globule migration in Haematococcus pluvialis (Chlorophyceae). J Phycol 48:1209–1219

    Google Scholar 

  47. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108(2):111–117

    CAS  Google Scholar 

  48. Han D, Li Y, Hu Q (2013) Astaxanthin in microalgae: pathways, functions and biotechnological implications. Algae 28(2):131–147

    CAS  Google Scholar 

  49. Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106(1):155–177

    PubMed  CAS  Google Scholar 

  50. Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products-major industrial species. Dunaliella. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford, pp 273–280

    Google Scholar 

  51. Ben Amotz A (1999) Dunaliella β-carotene: from science to commerce. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer, Dordrecht, pp 401–410

    Google Scholar 

  52. Masyuk N (1965) Mass culture of the carotene containing alga Dunaliella salina Teod. Ukr Bot Zh 23:12–19

    Google Scholar 

  53. Abdullaev A, Semenenko V (1974) Intensive cultivation and certain physiological characteristics of Duniella salina Teod. Sov Plant Physiol 21(6):1145–1153

    CAS  Google Scholar 

  54. Borowitzka M (2013) Dunaliella: biology, production, and markets. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Blackwell, Chichester, pp 359–368

    Google Scholar 

  55. Lu S, Li L (2008) Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integr Plant Biol 50(7):778–785

    PubMed  CAS  Google Scholar 

  56. Minyuk G, Drobetskaya I, Chubchikova I, Terentyeva N (2008) Unicellular algae as renewable biological resource: a review. Mar Ecol J 7(2):5–23

    Google Scholar 

  57. Otani H (2013) Site-specific antioxidative therapy for prevention of atherosclerosis and cardiovascular disease. Oxid Med Cell Longev 2013:796891

    PubMed  PubMed Central  Google Scholar 

  58. Sussela M, Toppo K (2006) Haematococcus pluvialis-a green alga, richest natural source of astaxanthin. Curr Sci 90(12):1602–1603

    Google Scholar 

  59. Renstrom B, Liaaen-Jensen S (1981) Fatty acid composition of some esterified carotenols. Comp Biochem Physiol B 69:625–627

    Google Scholar 

  60. Yuan J-P, Chen F (1998) Chromatographic separation and purification of trans-astaxanthin from the extracts of Haematococcus pluvialis. J Agric Food Chem 46(8):3371–3375

    CAS  Google Scholar 

  61. Borowitzka M, Siva C (2007) The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J Appl Phycol 19(5):567–590

    Google Scholar 

  62. Pick U (1998) Dunaliella: a model extremophilic alga. Isr J Plant Sci 46(2):131–139

    Google Scholar 

  63. Fabregas J, Dominguez A, Maseda A, Otero A (2003) Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl Microbiol Biotechnol 61(5):545–551

    PubMed  CAS  Google Scholar 

  64. Kobayashi M (2000) In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 54(4):550–555

    PubMed  CAS  Google Scholar 

  65. Zlotnik I, Sukenik A, Dubinsky Z (1993) Physiological and photosynthetic changes during the formation of red aplanospores in the chlorophyte Haematococcus pluvialis. J Phycol 29(4):463–469

    Google Scholar 

  66. Grünewald K, Hagen C (2001) β-carotene is the intermediate exported from the chloroplast during accumulation of secondary carotenoids in Haematococcus pluvialis. J Appl Phycol 13(1):89–93

    Google Scholar 

  67. Grunewald K, Hirschberg J, Hagen C (2001) Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J Biol Chem 276(8):6023–6029

    PubMed  CAS  Google Scholar 

  68. Hagen C, Grünewald K, Schmidt S, Müller J (2000) Accumulation of secondary carotenoids in flagellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. Eur J Phycol 35(1):75–82

    Google Scholar 

  69. Kobayashi M, Kakizono T, Nishio N, Nagai S, Kurimura Y, Tsuji Y (1997) Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 48(3):351–356

    CAS  Google Scholar 

  70. Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72(3):593–597

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Semenenko V, Abdullaev A (1980) Parametric control of beta-carotene biosynthesis in Dunaliella salina [Algae] cells under conditions of intensive cultivation. Sov Plant Physiol 27:22–30

    Google Scholar 

  72. Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59(3):867–873

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Jahnke L (1999) Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. J Photochem Photobiol B Biol 48(1):68–74

    CAS  Google Scholar 

  74. White A, Jahnke L (2002) Contrasting Effects of UV-A and UV-B on photosynthesis and photoprotection of β-carotene in two Dunaliella spp. Plant Cell Physiol 43(8):877–884

    PubMed  CAS  Google Scholar 

  75. Solovchenko A, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak M (2008) Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa. Russ J Plant Physiol 55(4):455–462

    CAS  Google Scholar 

  76. Aflalo C, Bing W, Zarka A, Boussiba S (1999) The effect of the herbicide glufosinate (BASTA) on astaxanthin accumulation in the green alga Haematococcus pluvialis. Z Naturforsch 54(12):49–54

    CAS  Google Scholar 

  77. Neilson J, Durnford D (2010) Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth Res 106(1):57–71

    PubMed  CAS  Google Scholar 

  78. Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids 46(9):851–861

    PubMed  CAS  Google Scholar 

  79. Zhekisheva M, Zarka A, Khozin-Goldberg I, Cohen Z, Boussiba S (2005) Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga Haematococcus pluvialis (Chlorophyceae). J Phycol 41(4):819–826

    CAS  Google Scholar 

  80. Tredici MR (2007) Mass production of microalgae: photobioreactors. In: Handbook of microalgal culture. Blackwell Publishing Ltd, Oxford, UK, pp 178–214. doi: 10.1002/9780470995280.ch9

  81. Pulz (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    PubMed  CAS  Google Scholar 

  82. Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5(6):593–604

    Google Scholar 

  83. Richmond A (2004) Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512(1):33–37

    Google Scholar 

  84. Zarmi Y, Bel G, Aflalo C (2013) Theoretical analysis of culture growth in flat-plate bioreactors: the essential role of timescales. In: Richmond A, Hu Q (eds) Handbook of microalgal culture, vol 2. Wiley-Blackwell, Chichester, pp 205–224

    Google Scholar 

  85. Lee CG, Palsson BØ (1994) High-density algal photobioreactors using light‐emitting diodes. Biotechnol Bioeng 44(10):1161–1167

    PubMed  CAS  Google Scholar 

  86. Richmond A, Cheng-Wu Z, Zarmi Y (2003) Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20(4–6):229–236

    PubMed  CAS  Google Scholar 

  87. Vejrazka C, Janssen M, Streefland M, Wijffels RH (2012) Photosynthetic efficiency of Chlamydomonas reinhardtii in attenuated, flashing light. Biotechnol Bioeng 109:2567–2574

    PubMed  CAS  Google Scholar 

  88. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028

    PubMed  CAS  Google Scholar 

  89. Camacho Rubio F, Sánchez Mirón A, Cerón García M, García Camacho F, Molina Grima E, Chisti Y (2004) Mixing in bubble columns: a new approach for characterizing dispersion coefficients. Chem Eng Sci 59(20):4369–4376

    CAS  Google Scholar 

  90. Sivakumar G, Xu J, Thompson RW, Yang Y, Randol-Smith P, Weathers PJ (2012) Integrated green algal technology for bioremediation and biofuel. Bioresour Technol 107:1–9

    PubMed  CAS  Google Scholar 

  91. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102(1):35–42

    PubMed  CAS  Google Scholar 

  92. Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    CAS  Google Scholar 

  93. Solovchenko A, Khozin-Goldberg I (2013) High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol Lett 35(11):1745–1752

    PubMed  CAS  Google Scholar 

  94. Van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30(6):1405–1424

    Google Scholar 

  95. Holland AD, Wheeler DR (2011) Intrinsic autotrophic biomass yield and productivity in algae: modeling spectral and mixing-rate dependence. Biotechnol J 6(5):584–599

    PubMed  CAS  Google Scholar 

  96. Perez-Garcia O, Escalante FME, De-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    PubMed  CAS  Google Scholar 

  97. Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87(4):1–11

    Google Scholar 

  98. Molina Grima E, Fernandez F, García Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70(1–3):231–247

    CAS  Google Scholar 

  99. Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. In: Scheper T (ed) Bioprocess and algae reactor technology, vol 59. Springer, Berlin, pp 123–152

    Google Scholar 

  100. Zittelli G, Biondi N, Rodolfi L, Tredici M (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, vol 2. Blackwell, Oxford, pp 225–266

    Google Scholar 

  101. Gutman J, Zarka A, Boussiba S (2011) Evidence for the involvement of surface carbohydrates in the recognition of Haematococcus pluvialis by the parasitic blastoclad Paraphysoderma sedebokerensis. Fungal Biol 115(8):803–811

    PubMed  CAS  Google Scholar 

  102. Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    PubMed  CAS  Google Scholar 

  103. Olaizola M (2003) Microalgal removal of CO2 from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnol Bioprocess Eng 8(6):360–367

    CAS  Google Scholar 

  104. Molina Grima E, Belarbi EH, Acien Fernandez F, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    PubMed  CAS  Google Scholar 

  105. Divakaran R, Sivasankara Pillai V (2002) Flocculation of algae using chitosan. J Appl Phycol 14(5):419–422

    CAS  Google Scholar 

  106. Gitelson A, Grits Y, Etzion D, Ning Z, Richmond A (2000) Optical properties of Nannochloropsis sp. and their application to remote estimation of cell mass. Biotechnol Bioeng 69(5):516–525

    PubMed  CAS  Google Scholar 

  107. Solovchenko A (2011) Pigment composition, optical properties, and resistance to photodamage of the microalga Haematococcus pluvialis cultivated under high light. Russ J Plant Physiol 58(1):9–17

    CAS  Google Scholar 

  108. Kaczor A, Turnau K, Baranska M (2011) In situ Raman imaging of astaxanthin in a single microalgal cell. Analyst 136(6):1109–1112

    PubMed  CAS  Google Scholar 

  109. Torzillo G, Goksan T, Faraloni C, Kopecky J, Masojídek J (2003) Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. J Appl Phycol 15(2):127–136

    CAS  Google Scholar 

  110. Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39(6):1116–1124

    CAS  Google Scholar 

  111. Solovchenko A, Khozin I, Chivkunova O (2011) Real-time spectral techniques for detection of the buildup of valuable compounds and stress in microalgal cultures: implications for biotechnology. In: Johansen M (ed) Microalgae: biotechnology, microbiology and energy. Nova Science Publishers, Hauppauge, pp 251–276

    Google Scholar 

  112. Solovchenko A, Khozin-Goldberg I, Cohen Z, Merzlyak M (2009) Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. J Appl Phycol 21(3):361–366

    CAS  Google Scholar 

  113. Solovchenko A, Merzlyak M, Khozin-Goldberg I, Cohen Z, Boussiba S (2010) Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in Δ5 desaturase by nitrogen starvation and high light. J Phycol 46(4):763–772

    CAS  Google Scholar 

  114. Solovchenko A, Aflalo C, Lukyanov A, Boussiba S (2013) Nondestructive monitoring of carotenogenesis in Haematococcus pluvialis via whole-cell optical density spectra. Appl Microbiol Biotechnol 97(10):4533–4541

    PubMed  CAS  Google Scholar 

  115. Solovchenko A, Khozin-Goldberg I, Recht L, Boussiba S (2011) Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids. Mar Biotechnol 13(3):527–535

    PubMed  CAS  Google Scholar 

  116. Issarapayup K, Powtongsook S, Pavasant P (2009) Flat panel airlift photobioreactors for cultivation of vegetative cells of microalga Haematococcus pluvialis. J Biotechnol 142(3):227–232

    PubMed  CAS  Google Scholar 

  117. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20(4):459–466

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of Russian foundation of Basic Research and Ministry of Science and Education of Russian Federation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Solovchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Solovchenko, A., Chekanov, K. (2014). Production of Carotenoids Using Microalgae Cultivated in Photobioreactors. In: Paek, KY., Murthy, H., Zhong, JJ. (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_4

Download citation

Publish with us

Policies and ethics