Skip to main content

Metabolic Engineering of Selected Secondary Metabolites

  • Chapter
  • First Online:
Production of Biomass and Bioactive Compounds Using Bioreactor Technology

Abstract

The demand for the production of valuable secondary metabolites is increasing rapidly. While many metabolites can be directly extracted from intact plants, others are routinely produced using cell or organ cultures. The latter, also called Hairy roots when generated through the transformation with the bacterium Agrobacterium rhizogenes, are also amenable to molecular modifications. Similar to intact plants metabolic pathways can be altered by introducing homologous or foreign genes. The better the knowledge of a given pathway, the more efficient will be the genetic alteration. Some of the general requirements for metabolic engineering of secondary metabolites will be discussed together with methodological considerations, especially the analysis of secondary metabolites and also the transformation methods. In addition, some examples for successful establishment of transgenic plants for metabolite production will be described. Finally, some alternative plant production systems will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGO:

Argonaute

BL-SOM:

Batch-learning self-organizing map analysis

DCL:

Dicer-like

DSB:

Double stranded DNA breaks

ER:

Endoplasmic reticulum

GC:

Gas chromatography

GMO:

Genetically modified organism

GSL:

Glucosinolate

HCA:

Hierarchical cluster analysis

HPLC:

High performance liquid chromatography

IEE:

Intercistronic expression element

IR:

Infrared

JA:

Jasmonic acid

JA-Ile:

JA-Isoleucine

LC:

Liquid chromatography

MEP:

Methylerythritol-phosphate

miRNA:

microRNA

MS:

Mass spectrometry

MVA:

Mevalonate

NMR:

Nuclear magnetic resonance

PA:

Pyrrolizidine alkaloid

PCA:

Principal component analysis

PLS-DA:

Partial least squares discriminant analysis

QTL:

Quantitative Trait Loci

RISC:

RNA-induced silencing complex

SCF:

SKP, CUL, F-box

TALEN:

Transcription activator-like effector nuclease

Ti:

Tumor-inducing

ZNF:

Zinc finger nuclease

References

  1. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:31–50

    Google Scholar 

  2. Gómez-Galera S, Pelacho AM, Gené A, Capell T, Christou P (2007) The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep 26:1689–1715

    PubMed  Google Scholar 

  3. Bogers RJ, Craker LE, Lange D (eds) (2006) Medicinal and aromatic plants: agricultural, commercial, ecological, legal, pharmacological, and social aspects. Springer, Dordrecht

    Google Scholar 

  4. Verpoorte R, Alfermann AW (eds) (2000) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrecht

    Google Scholar 

  5. Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10:371–395

    CAS  Google Scholar 

  6. Georgiev MI, Ludwig-Müller J, Bley T (2010) Hairy root culture: copying nature in new bioprocesses. In: Arora R (ed) Medicinal plant biotechnology. CAB International, Oxon, pp 156–175

    Google Scholar 

  7. Nitzsche A, Tokalov SV, Gutzeit HO, Ludwig-Müller J (2004) Chemical and biological characterization of cinnamic acid derivatives from cell cultures of lavender (Lavandula officinalis) induced by stress and jasmonic acid. J Agric Food Chem 52:2915–2923

    PubMed  CAS  Google Scholar 

  8. Cannell RJP (ed) (1998) Natural products isolation. Methods in biotechnology, vol 4. Humana Press, Totowa

    Google Scholar 

  9. Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107:679–685

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Sharp PM, Li W-H (1987) The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acid Res 15:1281–1295

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Cohen JD, Baldi BG, Slovin JP (1986) (13C6-[Benzene ring)-indole-3-acetic acid: a new internal standard for quantitative mass spectral analysis of indole-3-acetic acid in plants. Plant Physiol 80:14–19

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Kim HK, Choi YH, Verpoorte R (2011) NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 29:267–275

    PubMed  CAS  Google Scholar 

  13. Okazaki Y, Saito K (2012) Recent advances of metabolomics in plant biotechnology. Plant Biotechnol Rep 6:1–15

    PubMed  PubMed Central  Google Scholar 

  14. Sawada H, Ieki H, Matsuda I (1995) PCR detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61:828–831

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Grabkowska R, Krolicka A, Mielicki W, Wielanek M, Wysokinska H (2010) Genetic transformation of Harpagophytum procumbens by Agrobacterium rhizogenes: iridoid and phenylethanoid glycoside accumulation in hairy root cultures. Acta Physiol Plant 32:665–673

    CAS  Google Scholar 

  16. Georgiev M, Ludwig-Müller J, Alipieva K, Lippert A (2011) Sonication-assisted Agrobacterium rhizogenes-mediated transformation of Verbascum xanthophoeniceum Griseb. for bioactive metabolite accumulation. Plant Cell Rep 30:859–866

    PubMed  CAS  Google Scholar 

  17. Scharff LB, Bock R (2013) Synthetic biology in plastids. Plant J 78:783–798

    PubMed  Google Scholar 

  18. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Zang Y-X, Kim D-H, Hong S-B (2008) Agrobacterium tumefaciens-mediated hairy root production from seedlings of Chinese cabbage. J Plant Biol 51:255–259

    CAS  Google Scholar 

  20. Azhagiri AK, Maliga P (2007) Exceptional paternal inheritance of plastids in Arabidopsis suggests that low-frequency leakage of plastids via pollen may be universal in plants. Plant J 52:817–823

    PubMed  CAS  Google Scholar 

  21. Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci U S A 104:6998–7002

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci U S A 110:E623–E632

    PubMed  PubMed Central  Google Scholar 

  23. Collakova E, DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127:1113–1124

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Bock R (2013) Strategies for metabolic pathway engineering with multiple transgenes. Plant Mol Biol 83:21–31

    PubMed  CAS  Google Scholar 

  25. Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553

    PubMed  CAS  Google Scholar 

  26. Maliga P, Bock R (2011) Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155:1501–1510

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Hooykaas PJJ (2000) Agrobacterium, a natural metabolic engineer of plants. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrecht, pp 51–67

    Google Scholar 

  28. Jouhikainen K, Lindgren L, Jokelainen T, Hiltunen R, Teeri TH, Oksman-Caldentey KM (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208:545–551

    CAS  Google Scholar 

  29. Verpoorte R, van der Heijden R, Memelink J (2000) Genetic engineering of plant secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrecht, pp 31–50

    Google Scholar 

  30. Sato F, Hashimoto T, Hachiya A, Tamura K-I, Choi K-B, Morishige T, Fujimoto H, Yamada Y (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A 98:367–372

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Galneder E, Rueffer M, Wanner G, Tabata M, Zenk MH (1988) Alternative final steps in berberine biosynthesis in Coptis japonica cell cultures. Plant Cell Rep 7:1–4

    PubMed  CAS  Google Scholar 

  32. Breitenbach JP, Bai C, Rivera SM, Canela R, Capell T, Christou P, Zhu C, Sandmann G (2014) A novel carotenoid, 4-keto-α-carotene, as an unexpected by-product during genetic engineering of carotenogenesis in rice callus. Phytochemistry 98:85–91

    PubMed  CAS  Google Scholar 

  33. Winkel BSJ (2004) Metabolic channelling in plants. Annu Rev Plant Biol 55:85–107

    PubMed  CAS  Google Scholar 

  34. Facchini PJ, St-Pierre B (2005) Synthesis and trafficking of alkaloid biosynthetic enzymes. Curr Opin Plant Biol 8:657–666

    PubMed  CAS  Google Scholar 

  35. Bender J, Celenza JL (2009) Indolic glucosinolates at the crossroads of tryptophan metabolism. Phytochem Rev 8:25–37

    CAS  Google Scholar 

  36. Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106

    PubMed  CAS  Google Scholar 

  37. Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Zeng J, Lytle AK, Gage D, Johnson SJ, Zhan J (2013) Specific chlorination of isoquinolines by a fungal flavin-dependent halogenase. Bioorg Med Chem Lett 23:1001–1003

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Neumann CS, Fujimori DG, Walsh CT (2008) Halogenation strategies in natural product biosynthesis. Chem Biol 15:99–109

    PubMed  CAS  Google Scholar 

  40. Smith DRM, Grüschow S, Goss RJM (2013) Scope and potential of halogenases in biosynthetic applications. Curr Opin Chem Biol 17:276–283

    PubMed  CAS  Google Scholar 

  41. Zehner S, Kotzsch A, Bister B, Süssmuth RD, Mendez C, Salas JA, van Pee K-H (2005) A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005. Chem Biol 12:445–452

    PubMed  CAS  Google Scholar 

  42. Yeh E, Garneau S, Walsh CT (2005) Robust in vitro activity of RebF and RebH, a two component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proc Natl Acad Sci U S A 102:3960–3965

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Runguphan W, Qu X, O’Connor SE (2010) Integrating carbon–halogen bond formation into medicinal plant metabolism. Nature 468:461–464

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Hibbert EG, Dalby PA (2005) Directed evolution strategies for improved enzymatic performance. Microb Cell Fact 4:29

    PubMed  PubMed Central  Google Scholar 

  45. Runguphan W, Glenn WS, O’Connor SE (2012) Redesign of a dioxygenase in morphine biosynthesis. Chem Biol 19:674–678

    PubMed  CAS  Google Scholar 

  46. El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6:277–305

    CAS  Google Scholar 

  47. Georgiev M, Agostini E, Ludwig-Müller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnology. Trends Biotechnol 30:528–537

    PubMed  CAS  Google Scholar 

  48. Runguphan W, Maresh JJ, O’Connor SE (2009) Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture. Proc Natl Acad Sci U S A 106:13673–13678

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Hartmann T, Witte L (1995) Pyrrolizidine alkaloids: chemical, biological and chemoecological aspects. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 9. Pergamon, Oxford, pp 55–233

    Google Scholar 

  50. Röder E (1995) Medicinal plants in Europe containing pyrrolizidine alkaloids. Pharmazie 50:83–98

    Google Scholar 

  51. Cen T, Mei N, Fu PP (2010) Genotoxicity of pyrrolizidine alkaloids. J Appl Toxicol 30:183–196

    Google Scholar 

  52. Smith NA, Singh SP, Wang M-B, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron spliced hairpin RNAs. Nature 407:319–320

    PubMed  CAS  Google Scholar 

  53. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    PubMed  CAS  Google Scholar 

  54. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350

    PubMed  CAS  Google Scholar 

  55. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Huizing HJ, Pfauth EC, Malingri TM, Sietsma JH (1983) Regeneration of plants from tissue- and cell suspension cultures of Symphytum officinale L. and effect of in vitro culture on pyrrolizidine alkaloid production. Plant Cell Tiss Organ Cult 2:227–238

    CAS  Google Scholar 

  57. Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY (2012) Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol 54:703–712

    PubMed  CAS  Google Scholar 

  58. Chiu L-W, Zhou X, Burke S, Wu X, Prior RL, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154:1470–1480

    PubMed  CAS  PubMed Central  Google Scholar 

  59. De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359

    PubMed  Google Scholar 

  60. Gigolashvili T, Berger B, Flügge U-I (2009) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem Rev 8:3–13

    CAS  Google Scholar 

  61. Memelink J, Gantet P (2007) Transcription factors involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Phytochem Rev 6:353–362

    CAS  Google Scholar 

  62. Peebles CAM, Hughes EH, Shanks JV, San K-Y (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 11:76–86

    PubMed  CAS  Google Scholar 

  63. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, He NK, Yang S, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    PubMed  CAS  Google Scholar 

  64. Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Katsir L, Chung HS, Koo AJK, Howe GA (2008) Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 11:428–435

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Nims E, Dubois CP, Roberts SC, Walker EL (2006) Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metab Eng 8:385–394

    PubMed  CAS  Google Scholar 

  67. Grotewold E (2001) Subcellular trafficking of phytochemicals. Recent Res Devel Plant Physiol 2:31–48

    CAS  Google Scholar 

  68. Nour-Eldin HH, Halkier BA (2013) The emerging field of transport engineering of plant specialized metabolites. Curr Opin Biotechnol 24:263–270

    PubMed  CAS  Google Scholar 

  69. Hamill JD, Robins RJ, Parr AJ, Evans DM, Furze JM, Rhodes MJC (1990) Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol Biol 15:27–38

    PubMed  CAS  Google Scholar 

  70. Tabata H (2004) Paclitaxel production by plant-cell-culture technology. Adv Biochem Eng Biotechnol 87:1–23

    PubMed  CAS  Google Scholar 

  71. Guerra-Bubb J, Croteau R, Williams RM (2012) The early stages of the biosynthesis of taxol: an interim report on the synthesis and identification of early pathway metabolites. Nat Prod Rep 29:683–696

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34

    CAS  Google Scholar 

  74. Cusidó RM, Vidal H, Gallego A, Abdoli M, Palazón J (2013) Biotechnological production of taxanes: a molecular approach. In: Muñoz-Torrero D, Cortés A, Mariño EL (eds) Recent advances in pharmaceutical sciences III, vol 3. Transworld Research Network, Trivandrum, pp 91–107

    Google Scholar 

  75. Onrubia M, Moyano E, Bonfill M, Cusidó RM, Goossens A, Palazón J (2011) Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate. J Plant Physiol 170:211–219

    Google Scholar 

  76. Hezari M, Lewis NG, Croteau R (1995) Purification and characterization of taxa-4(5),11(12)-diene synthase from Pacific yew (Taxus brevifolia) that catalyzes the first committed step of taxol biosynthesis. Arch Biochem Biophys 322:437–444

    PubMed  CAS  Google Scholar 

  77. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    PubMed  CAS  Google Scholar 

  78. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    PubMed  CAS  Google Scholar 

  79. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    PubMed  CAS  Google Scholar 

  80. Giamoustaris A, Mithen R (1997) Glucosinolates and disease resistance in oilseed rape. Plant Pathol 46:271–275

    CAS  Google Scholar 

  81. Radojčić Redovniković I, Glivetić T, Delonga K, Vorkapić-Furač J (2008) Glucosinolates and their potential role in plant. Period Biol 110:297–309

    Google Scholar 

  82. Kastell A, Smetanska I, Ulrichs C, Cai Z, Mewis I (2013) Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa. Appl Biochem Biotechnol 169:624–635

    PubMed  CAS  Google Scholar 

  83. Kastell A, Smetanska I, Schreiner M, Mewis I (2013) Hairy roots, callus, and mature plants of Arabidopsis thaliana exhibit distinct glucosinolate and gene expression profiles. Plant Cell Tiss Organ Cult 115:45–54

    CAS  Google Scholar 

  84. Baskar V, Gururani MA, Yu JW, Park SW (2012) Engineering glucosinolates in plants: current knowledge and potential uses. Appl Biochem Biotechnol 168:1694–1717

    PubMed  CAS  Google Scholar 

  85. Zang Y-X, Kim J-H, Park Y-D, Kim D-H, Hong S-B (2008) Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1. BMB Rep 41:472–478

    PubMed  CAS  Google Scholar 

  86. Bak S, Olsen CE, Peteresen BL, Møller BL, Halkier BA (1999) Metabolic engineering of p-hydroxybenzyl glucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor. Plant J 20:663–671

    PubMed  CAS  Google Scholar 

  87. Mikkelsen MD, Halkier BA (2003) Metabolic engineering of valine- and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from cassava. Plant Physiol 131:773–779

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712–33717

    PubMed  CAS  Google Scholar 

  89. Geu-Flores F, Olsen CE, Halkier BA (2009) Towards engineering glucosinolates into noncruciferous plants. Planta 229:261–270

    PubMed  CAS  Google Scholar 

  90. Decker EL, Reski R (2008) Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst Eng 31:3–9

    PubMed  CAS  Google Scholar 

  91. Skjanes K, Rebours C, Lindblad P (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33:172–215

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Homann PH (2003) Hydrogen metabolism of green algae: discovery and early research – a tribute to Hans Gaffron and his coworkers. Photosynth Res 76:93–103

    PubMed  CAS  Google Scholar 

  93. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821–1828

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Neupert J, Shao N, Lu Y, Bock R (2012) Genetic transformation of the model green alga Chlamydomonas reinhardtii. Methods Mol Biol 847:35–47

    PubMed  CAS  Google Scholar 

  96. Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga – Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738

    CAS  Google Scholar 

  97. Purton S (2007) Tools and techniques for chloroplast transformation of Chlamydomonas. Adv Exp Med Biol 616:34–45

    PubMed  Google Scholar 

  98. Tate JJ, Gutierrez-Wing T, Rusch KA, Benton MG (2013) The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella sp.: a review. J Plant Growth Regul 32:417–428

    CAS  Google Scholar 

  99. Chow K-C, Tung WL (1999) Electro transformation of Chlorella vulgaris. Plant Cell Rep 18:778–780

    CAS  Google Scholar 

  100. Cha TS, Yee W, Aziz A (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J Microbiol Biotechnol 28:1771–1779

    PubMed  CAS  Google Scholar 

  101. Dawson HN, Burlingame R, Cannons AC (1997) Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 35:356–362

    PubMed  CAS  Google Scholar 

  102. Reski R (1998) Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics. Trends Plant Sci 3:209–210

    Google Scholar 

  103. Ludwig-Müller J, Jülke S, Bierfreund NM, Decker EL, Reski R (2009) Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytol 181:323–338

    PubMed  Google Scholar 

  104. Wiedemann G, Hermsen C, Melzer M, Büttner-Mainik A, Rennenberg H, Reski R, Kopriva S (2010) Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development. FEBS Lett 584:2271–2278

    PubMed  CAS  Google Scholar 

  105. Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    PubMed  CAS  Google Scholar 

  106. Büttner-Mainik A, Parsons J, Jérôme H, Hartmann A, Lamer S, Schaaf A, Schlosser A, Zipfel PF, Reski R, Decker EL (2011) Production of biologically active recombinant human factor H in Physcomitrella. Plant Biotechnol J 9:373–383

    PubMed  Google Scholar 

  107. Asakawa Y (2007) Biologically active compounds from bryophytes. Pure Appl Chem 79:557–580

    CAS  Google Scholar 

  108. Beike AK, Decker EL, Frank W, Lang D, Vervliet-Scheebaum M, Zimmer AD, Reski R (2010) Applied bryology – bryotechnology. Trop Bryol 31:22–32

    Google Scholar 

  109. Frahm J-P (2004) Recent developments of commercial products from bryophytes. Bryologist 107:277–283

    Google Scholar 

  110. Rosenstiel TN, Shortlidge EE, Melnychenko AN, Pankow JF, Eppley SM (2012) Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. Nature 489:431–433

    PubMed  CAS  Google Scholar 

  111. Richter H, Lieberei R, Strnad M, Novak O, Gruz J, Rensing SA, Schwartzenberg VK (2012) Polyphenol oxidases in Physcomitrella – functional PPO1 knockout modulates cytokinin-dependent development in the moss Physcomitrella patens. J Exp Bot 63:5121–5135

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Schwartzenberg VK, Schultze W, Kassner H (2004) The moss Physcomitrella patens releases a tetracyclic diterpene. Plant Cell Rep 22:780–786

    Google Scholar 

  113. Erxleben A, Gessler A, Vervliet-Scheebaum M, Reski R (2012) Metabolite profiling of the moss Physcomitrella patens reveals evolutionary conservation of osmoprotective substances. Plant Cell Rep 31:427–436

    PubMed  CAS  Google Scholar 

  114. Decker EL, Reski R (2012) Glycoprotein production in moss bioreactors. Plant Cell Rep 31:453–460

    PubMed  CAS  Google Scholar 

  115. Anterola A, Shanle E, Perroud P-F, Quatrano R (2009) Production of taxa-4(5),11(12)-diene by transgenic Physcomitrella patens. Transgen Res 18:655–660

    CAS  Google Scholar 

  116. Verpoorte R (2000) Secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrecht, pp 1–29

    Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory was funded by the European Union and the State of Saxony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Ludwig-Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ludwig-Müller, J. (2014). Metabolic Engineering of Selected Secondary Metabolites. In: Paek, KY., Murthy, H., Zhong, JJ. (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_21

Download citation

Publish with us

Policies and ethics