Skip to main content

Disposable Bioreactors for Cultivation of Plant Cell Cultures

  • Chapter
  • First Online:
Book cover Production of Biomass and Bioactive Compounds Using Bioreactor Technology

Abstract

The trend for using disposable bioreactors in modern biotechnological processes has also been adopted for plant cell cultivations. In fact, plant cell cultures are now being grown in disposable bioreactors with volumes up to 400 L. This trend has been witnessed for both the development and commercial manufacture of therapeutic proteins, secondary metabolite-based pharmaceuticals and cosmetic compounds. Prominent examples of commercial products are Protalix’s ELELYSO and Mibelle Biochemistry’s Phyto Cell Tech-derived bioactive compounds.

This chapter discusses the current state of disposable bioreactor technology for plant cell cultures. After a brief introduction to the general fundamentals of disposable bioreactors (relevant technical terms, advantages and limitations of disposable bioreactors) a current overview of disposable plant cell bioreactors and their instrumentation will be provided. We will describe the working principles and engineering characteristics of disposable bioreactor types that are scalable and successfully being used for the cultivation of plant cell suspension and hairy root cultures. In addition, we will provide selected application examples focusing on the cultivation of geraniol producing tobacco cells. The chapter will end with perspective on future developments of disposable bioreactor technology for plant cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1 to 3D:

1 to 3-dimensional

BY-2:

Bright Yellow-2

CFD:

Computational fluid dynamics

CHO:

Chinese hamster ovary

DCO2 :

Dissolved carbon dioxide

DO:

Dissolved oxygen

EVA:

Ethylene vinyl acetate

fw:

Fresh weight

Glc:

Glucose

GMP:

Good manufacturing practice

hCTLA4Ig:

Recombinant cytotoxic T-lymphocyte antigen 4 immunoglobulin

kLa:

Oxygen mass transfer coefficient

Lac:

Lactate

LED:

Light emitting diode

PC:

Polycarbonate

PE:

Polyethylene

PP:

Polypropylene

PS:

Polystyrene

PU:

Polyurethane

P/V:

Specific power input

pcv:

Packed cell volume

PVC:

Polyvinylchloride

rpm:

Rotations per minute

SBB:

Slug bubble bioreactor

TI:

Temporary immersion

vvm:

Air volume per medium volume per minute

WUB:

Wave and undertow bioreactor

References

  1. Eibl D, Peuker T, Eibl R (2011) Single-use equipment in biopharmaceutical manufacture: a brief introduction. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 1–11

    Chapter  Google Scholar 

  2. Shukla AA, Gottschalk U (2013) Single-use disposable technologies for biopharmaceutical manufacturing. Trends Biotechnol 31:147–154

    Article  PubMed  CAS  Google Scholar 

  3. Aranha H (2004) Disposable systems. Bioprocess Int 2:6–16

    Google Scholar 

  4. Ott KD (2011) Are single-use technologies changing the game? Bioprocess Int 9:48–51

    Google Scholar 

  5. Rader RA, Langer ES (2011) Upstream single-use bioprocessing systems future market trends and growth assessment. Bioprocess Int 10:12–18

    Article  Google Scholar 

  6. Barbaroux M, Gueneron M (2012) Single-use biopharmaceutical device for producing, storing, and transporting e.g. culture medium product, has tube with contact layer that is fused to contact layer of bag, with physical continuity existing between contact layers, Patent WO2012022906-A1

    Google Scholar 

  7. Steiger N, Eibl R (2013) Interlaboratory test for detection of cytotoxic leachables arising from single-use bags. Chem Ing Tech 85:26–28

    Article  CAS  Google Scholar 

  8. Vanhamel S, Masy C (2011) Production of disposable bags: a manufacturer’s report. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 113–134

    Chapter  Google Scholar 

  9. Eibl R, Kaiser S, Lombriser R, Eibl D (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86:41–49

    Article  PubMed  CAS  Google Scholar 

  10. Eibl R, Steiger N, Wellnitz S, Vicente T, John C, Eibl D (2014) Fast single-use VLP vaccine productions based on insect cells and the baculovirus expression vector system: influenza as case study. In: Eibl D, Eibl R (eds) Advances in biochemical engineering/biotechnology, vol 138, Disposable bioreactors II. Springer, Berlin, pp 99–125

    Google Scholar 

  11. Eibl R, Brändli J, Eibl D (2012) Plant cell bioreactors, in biotechnology. Encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO. Eolss Publishers, Oxford, [http://eolss.net] [Retrieved] March 03, 2014

    Google Scholar 

  12. Georgiev MI, Eibl R, Zhong J-J (2013) Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97:3787–3800

    Article  PubMed  CAS  Google Scholar 

  13. Löffelholz C, Kaiser S, Kraume M, Eibl R, Eibl D (2014) Dynamic single-use bioreactors used in modern liter- and m3- scale biotechnological processes: engineering characteristics and scaling up. In: Eibl D, Eibl R (eds) Advances in biochemical engineering/biotechnology, vol 138, Disposable bioreactors II. Springer, Berlin, pp 1–44

    Google Scholar 

  14. Weathers PJ, Towler MJ, Xu J (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351

    Article  PubMed  CAS  Google Scholar 

  15. Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Hsiao TY, Bacani FT, Carvalho EB, Curtis WR (1999) Development of a low capital investment reactor system: application for plant cell suspension culture. Biotechnol Prog 15:114–122

    Article  PubMed  CAS  Google Scholar 

  17. Shaaltiel Y, Kirshner Y, Shtainz A, Naos Y, Shneor Y (2010) Large scale disposable bioreactor, Patent US 2010/0112700 A1

    Google Scholar 

  18. Huang T-K, McDonald K (2012) Molecular farming using bioreactor-based plant cell suspension cultures for recombinant protein production. In: Wang A, Ma S (eds) Molecular farming in plants: recent advances and future prospects. Springer, Netherlands, pp 37–67

    Google Scholar 

  19. Werner S, Eibl R, Lettenbauer C, Röll M, Eibl D, De Jesus M, Zhang X, Stettler M, Tissot S, Burki C, Broccard G, Kuhner M, Tanner R, Baldi L, Hacker D, Wurm FM (2010) Innovative, non-stirred bioreactors in scales from milliliters up to 1000 liters for suspension cultures of cells using disposable bags and containers–a Swiss contribution. Chimia 64:819–823

    Article  PubMed  CAS  Google Scholar 

  20. Imseng N, Schillberg S, Schürch C, Schütte K, Gorr G, Eibl D, Eibl R (2014) Suspension culture of plant cells under heterotrophic conditions. In: Meyer HP, Schmidhalter DR (eds) Industrial scale suspension culture of living cells. Wiley, Weinheim, pp 225–257

    Google Scholar 

  21. Kadarusman J, Bhatia R, McLaughlin J, Lin WLR (2005) Growing cholesterol-dependent NS0 myeloma cell line in the wave bioreactor system: overcoming cholesterol-polymer interaction by using pretreated polymer or inert fluorinated ethylene propylene. Biotechnol Prog 21:1341–1346

    Article  PubMed  CAS  Google Scholar 

  22. Altaras GM, Eklund C, Ranucci C, Maheshwari G (2007) Quantitation of interaction of lipids with polymer surfaces in cell culture. Biotechnol Bioeng 96:999–1007

    Article  PubMed  CAS  Google Scholar 

  23. Horvath B, Tsang VL, Lin W, Dai X-P, Kunas K, Frank G (2013) A generic growth test method for improving quality control of disposables in industrial cell culture. Biopharm Int 26:34–41

    CAS  Google Scholar 

  24. Wood J, Mahajan E, Shiratori M (2013) Strategy for selecting disposable bags for cell culture media applications based on a root-cause investigation. Biotechnol Prog 29:1535–1549

    Article  PubMed  CAS  Google Scholar 

  25. Hammond M, Nunn H, Rogers G, Lee H, Marghitoiu A-L, Perez L, Nashed-Samuel Y, Anderson C, Vandiver M, Kline S (2013) Identification of a leachable compound detrimental to cell growth in single-use bioprocess containers. PDA J Pharm Sci Technol 67:123–134

    Article  PubMed  CAS  Google Scholar 

  26. Glindkamp A, Riechers D, Rehbock C, Hitzmann B, Scheper T, Reardon K (2011) Sensors in disposable bioreactors status and trends. In: Eibl R, Eibl D (eds) Advances in biochemical engineering/biotechnology, vol 115, Disposable bioreactors. Springer, Berlin, pp 145–169

    Google Scholar 

  27. Lindner P, Endres C, Bluma A, Höpfner T, Glindkamp A, Haake C, Landgrebe D, Riechers D, Baumfalk R, Hitzmann B, Scheper T, Reardon KF (2011) Disposable sensor systems. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 67–81

    Chapter  Google Scholar 

  28. Endress R (1994) Plant cell biotechnology. Springer, Berlin

    Book  Google Scholar 

  29. Fowler MW (1988) Problems in commercial exploitation of plant-cell cultures. Ciba Found Symp 137:239–250

    Google Scholar 

  30. Ballica R, Ryu DD (1993) Effects of rheological properties and mass transfer on plant cell bioreactor performance: production of tropane alkaloids. Biotechnol Bioeng 42:1181–1189

    Article  PubMed  CAS  Google Scholar 

  31. Kieran PM, MacLoughlin PF, Malone DM (1997) Plant cell suspension cultures: some engineering considerations. J Biotechnol 59:39–52

    Article  PubMed  CAS  Google Scholar 

  32. Raposo S, Lima-Costa ME (2006) Rheology and shear stress of Centaurea calcitrapa cell suspension cultures grown in bioreactor. Biotechnol Lett 28:431–438

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez-Monroy M, Galindo E (1999) Broth rheology, growth and metabolite production of Beta vulgaris suspension culture: a comparative study between cultures grown in shake flasks and in a stirred tank. Enzyme Microb Technol 24:687–693

    Article  CAS  Google Scholar 

  34. Trejo-Tapia G, Jimenez-Aparicio A, Villarreal L, Rodriguez-Monroy M (2001) Broth rheology and morphological analysis of Solanum chrysotrichum cultivated in a stirred tank. Biotechnol Lett 23:1943–1946

    Article  CAS  Google Scholar 

  35. Brandt S (2013) Entwicklung eines Taxol-Produktionsprozesses mit Haselnuss-Suspensionszellen in Einwegbioreaktoren. Diploma thesis, Technical University Dresden

    Google Scholar 

  36. Raven N, Schillberg S, Kirchhoff J, Brändli J, Imseng N, Eibl R (2011) Growth of BY-2 suspension cells and plantibody production in single-use bioreactors. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 251–261

    Chapter  Google Scholar 

  37. Bentebibel S, Moyano E, Palazon J, Cusido RM, Bonfill M, Eibl R, Pinol MT (2005) Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng 89:647–655

    Article  PubMed  CAS  Google Scholar 

  38. Eibl R, Werner S, Eibl D (2009) Disposable bioreactors for plant liquid cultures at litre-scale. Eng Life Sci 9:156–164

    Article  CAS  Google Scholar 

  39. Bonfill M, Bentebibel S, Moyano E, Palazón J, Cusidó RM, Eibl R, Piñol MT (2007) Paclitaxel and baccatin III production induced by methyl jasmonate in free and immobilized cells of Taxus baccata. Biol Plant 51:647–652

    Article  CAS  Google Scholar 

  40. Cuperus S, Eibl R, Hühn T, Amado R (2007) Plant cell culture-based platform: investigating biochemical processes in wine production. BioForum Eur 6:2–4

    Google Scholar 

  41. Ritala A, Dong L, Imseng N, Seppänen-Laakso T, Vasilev N, van der Krol S, Rischer H, Maaheimo H, Virkki A, Brändli J, Schillberg S, Eibl R, Bouwmeester H, Oksman-Caldentey K-M (2014) Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway. J Biotechnol 176:20–8

    Article  PubMed  CAS  Google Scholar 

  42. Schürch C, Blum P, Zülli F (2008) Potential of plant cells in culture for cosmetic application. Phytochem Rev 7:599–605

    Article  Google Scholar 

  43. Brändli J, Müller M, Imseng N, Schillberg S, Eibl R (2012) Prozessentwicklung und -übertragung vom 50-ml- auf den 10-l-Maßstab. BIOspektrum 18:216–217

    Article  Google Scholar 

  44. Terrier B, Courtois D, Henault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Petiard V (2007) Two new disposable bioreactors for plant cell culture: the wave and undertow bioreactor and the slug bubble bioreactor. Biotechnol Bioeng 96:914–923

    Article  PubMed  CAS  Google Scholar 

  45. Ducos J-P, Terrier B, Courtois D (2009) Disposable bioreactors for plant micropropagation and mass plant cell culture. Adv Biochem Eng Biotechnol 115:89–115

    PubMed  CAS  Google Scholar 

  46. Eibl R, Werner S, Eibl D (2009) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol 115:55–87

    PubMed  CAS  Google Scholar 

  47. Palazon J, Mallol A, Eibl R, Lettenbauer C, Cusido RM, Pinol MT (2003) Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69:344–349

    Article  PubMed  CAS  Google Scholar 

  48. Niederkrüger H (2013) Pharmaceutical production of recombinant proteins in a wave-based single-use process with Bryotechnology. Proceedings Biotech 2013, Zurich University of Applied Sciences Wädenswil

    Google Scholar 

  49. Eibl R, Eibl D (2006) Design and use of the wave bioreactor for plant cell culture. In: Gupta SD, Ibaraki Y (eds) Plan tissue culture engineering, vol 6, Focus on biotechnology. Springer, Netherlands, pp 203–227

    Chapter  Google Scholar 

  50. Klöckner W, Tissot S, Wurm F, Buechs J (2012) Power input correlation to characterize the hydrodynamics of cylindrical orbitally shaken bioreactors. Biochem Eng J 65:63–69

    Article  Google Scholar 

  51. Werner S, Olownia J, Egger D, Eibl D (2013) An approach for scale-up of geometrically dissimilar orbitally shaken single-use bioreactors. Chem Ing Tech 85:118–126

    Article  CAS  Google Scholar 

  52. Greulich J, Werner S, Geipel K, Eibl D, Bley T (2013) Comparative studies on the proliferation of sunflower suspension cells in disposable bioreactors. Proceedings Biotech 2013, Zurich University of Applied Sciences Wädenswil

    Google Scholar 

  53. Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhövel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi E, Ripplinger P (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Gen Res 3:90–100

    Article  CAS  Google Scholar 

  54. Liu C, Towler MJ, Medrano G, Cramer CL, Weathers PJ (2009) Production of mouse interleukin-12 is greater in tobacco hairy roots grown in a mist reactor than in an airlift reactor. Biotechnol Bioeng 102:1074–1086

    Article  PubMed  CAS  Google Scholar 

  55. Fei L, Weathers P (2014) From cells to embryos to rooted plantlets in a mist bioreactor. Plant Cell Tiss Organ Cult 116:37–46

    Google Scholar 

  56. Curtis WR (2004) Growing cells in a reservoir formed of a flexible sterile plastic liner, Patent US6709862B2

    Google Scholar 

  57. Ducos JP, Terrier B, Courtois D, Pétiard V (2008) Improvement of plastic-based disposable bioreactors for plant science needs. Phytochem Rev 7:607–613

    Article  CAS  Google Scholar 

  58. Kwon J-Y, Yang Y-S, Cheon S-H, Nam H-J, Jin G-H, Kim D-I (2013) Bioreactor engineering using disposable technology for enhanced production of hCTLA4Ig in transgenic rice cell cultures. Biotechnol Bioeng 110:2412–2424

    Article  PubMed  CAS  Google Scholar 

  59. Ziv M (1999) Organogenic plant regeneration in bioreactors. In: Altman A, Ziv M, Izhar S (eds) Plant biotechnology and in vitro biology in the 21st century, vol 36, Current plant science and biotechnology in agriculture. Springer, Netherlands, pp 673–676

    Chapter  Google Scholar 

  60. Ziv M, Ronen G, Raviv M (1998) Proliferation of meristematic clusters in disposable-pre-sterilized plastic biocontainers for the large-scale micropropagation of plants. In Vitro Cell Dev Biol Plant 34:152–158

    Article  Google Scholar 

  61. Ziv M (2000) Bioreactor technology for plant micropropagation. Hortic Rev 24:1–30

    CAS  Google Scholar 

  62. Ziv M (2005) Bioreactor technology for plant micropropagation. Hortic Rev 24:1–30

    Google Scholar 

  63. Ziv M (1991) Quality of micropropagated plants—Vitrification. In Vitro Cell Dev Biol Plant 27:64–69

    Article  Google Scholar 

  64. Cuello JL (1994) Design and scale up of ebb-and-flow bioreactor (EFBR) for hairy root cultures. Ph. D. thesis, Pennsylvania State University

    Google Scholar 

  65. Ducos JP, Chantanumat P, Vuong P, Lambot C, Petiard V (2007) Mass propagation of Robusta clones: disposable plastic bags for pregermination of somatic embryos by temporary immersion. In: Read PE (ed) Proceedings of the international symposium on plant biotechnology: from bench to commercialization. Acta Hort 764:33–40

    Google Scholar 

  66. Weathers P, Liu C, Towler M, Wyslouzil B (2008) Mist reactors: principles, comparison of various systems, and case studies. J Int Biosci 3:29–37

    Google Scholar 

  67. Oosterhuis NMG, Neubauer P, Junne S (2013) Single-use bioreactors for microbial cultivation. Pharm Bioprocess 1:167–177

    Article  Google Scholar 

  68. Charlton H (2013) Improved bioreactor design for laboratory to production suite operations. Proceedings Biotech 2013, Zurich University of Applied Sciences Wädenswil

    Google Scholar 

  69. Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: I. Power consumption measurement in unbaffled flasks at low liquid viscosity. Biotechnol Bioeng 68:589–593

    Article  PubMed  Google Scholar 

  70. Gupta A, Rao G (2003) A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor. Biotechnol Bioeng 84:351–358

    Article  PubMed  CAS  Google Scholar 

  71. Freyer SA, Konig M, Kunkel A (2004) Validating shaking flasks as representative screening systems. Biochem Eng J 17:169–173

    Article  CAS  Google Scholar 

  72. Maier U, Losen M, Büchs J (2004) Advances in understanding and modeling the gas-liquid mass transfer in shake flasks. Biochem Eng J 17:155–167

    Article  CAS  Google Scholar 

  73. Zhang H, Williams-Dalson W, Keshavarz-Moore E, Shamlou PA (2005) Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks. Biotechnol Appl Biochem 41:1–8

    Article  PubMed  Google Scholar 

  74. Peter CP, Suzuki Y, Büchs J (2006) Hydromechanical stress in shake flasks: correlation for the maximum local energy dissipation rate. Biotechnol Bioeng 93:1164–1176

    Article  PubMed  CAS  Google Scholar 

  75. Klöckner W, Diederichs S, Büchs J (2014) Orbitally shaken single-use bioreactors. In: Eibl D, Eibl R (eds) Advances in biochemical engineering/biotechnology, vol 138, Disposable bioreactors II. Springer, Berlin, pp 45–60

    Google Scholar 

  76. Liu CM, Hong LN (2001) Development of a shaking bioreactor system for animal cell cultures. Biochem Eng J 7:121–125

    Article  PubMed  CAS  Google Scholar 

  77. Raval KN, Liu C, Büchs J (2006) Large-scale disposable shaking bioreactors: a promising choice. Bioprocess Int 4:45–50

    Google Scholar 

  78. Anderlei T, Cesana C, Buerki C, De Jesus M, Kuehner M, Wurm F, Lohser R (2009) Shaken bioreactors provide culture alternative. Genet Eng Biotechnol N 29:44

    Google Scholar 

  79. Klöckner W, Gacem R, Anderlei T, Raven N, Schillberg S, Lattermann C, Büchs J (2013) Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale. J Biol Eng 7:1754–1611

    Article  Google Scholar 

  80. Greulich J (2013) Vergleichende Untersuchungen zur Massenvermehrung von Sonnenblumenzellen in Suspensionskultur in Standard- und Einwegbioreaktoren. Diploma thesis, Technical University Dresden

    Google Scholar 

  81. Büchs J, Lotter S, Milbradt C (2001) Out-of-phase operating conditions, a hitherto unknown phenomenon in shaking bioreactors. Biochem Eng J 7:135–141

    Article  PubMed  Google Scholar 

  82. Peter CP, Lotter S, Maier U, Büchs J (2004) Impact of out-of-phase conditions on screening results in shaking flask experiments. Biochem Eng J 17:205–215

    Article  CAS  Google Scholar 

  83. Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Biotechnol Bioeng 68:594–601

    Article  PubMed  Google Scholar 

  84. Eibl R, Eibl D (2009) Application of disposable bag bioreactors in tissue engineering and for the production of therapeutic agents. In: Kasper C, Griensven M, Pörtner R (eds) Bioreactor systems for tissue engineering, vol 112, Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 183–207

    Chapter  Google Scholar 

  85. Werner S, Nägeli M (2007) Good vibrations: Charkterisierung eines neuen Einweg-Bioreaktorsystems. Biotechnol 3:22–23

    Google Scholar 

  86. Löffelholz C (2013) CFD als Instrument zur bioverfahrenstechnischen Charakterisierung von Single-use Bioreaktoren und zum Scale-up für Prozesse zur Etablierung und Produktion von Biotherapeutika. Ph. D. thesis, Brandenburg University of Technology, Brandenburg

    Google Scholar 

  87. Ries C (2008) Untersuchung zum Einsatz von Einwegbioreaktoren für die auf Insektenzellen basierte Produktion von internen und externen Proteinen. Diploma thesis, Zurich University of Applied Sciences Wädenswil

    Google Scholar 

  88. Löffelholz C, Kaiser SC, Werner S, Eibl D (2011) CFD as a tool to characterize single-use bioreactors. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 263–279

    Chapter  Google Scholar 

  89. Kaiser SC, Löffelholz C, Werner S, Eibl D (2011) CFD for characterizing standard and single-use stirred cell culture bioreactors. In: Minin IV, Minin OV (eds) Computational fluid dynamics technologies and applications. InTech, Open Access Publisher, pp 97–122

    Google Scholar 

  90. Kasier SC, Kraume M, Eibl D, Eibl R (2014) Single-use bioreactors for animal and human cells. In: Al-Rubeai M (ed) Cell engineering, vol 9, Animal Cell Culture. Springer, Heidelberg (in press)

    Google Scholar 

  91. Zambeaux JP, Vanhamel S, Bosco F, Castillo J (2007) Disposable bioreactor, Patent EP1961606A2

    Google Scholar 

  92. Farouk A, Moncaubig F (2011) Engineering analysis of mixing in ATMI’s bioreactors using computational fluid dynamics. Poster presented at 22nd ESACT meeting, Vienna

    Google Scholar 

  93. Davies RM, Taylor G (1950) The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc R Soc A 200:375–390

    Article  Google Scholar 

  94. Nicklin DJ, Wilkes JO, Davidson JF (1962) Two-phase flow in vertical tubes. Trans Inst Chem Eng 40:61–68

    CAS  Google Scholar 

  95. Sivakumar G, Liu C, Towler MJ, Weathers PJ (2010) Biomass production of hairy roots of Artemisia annua and Arachis hypogaea in a scaled-up mist bioreactor. Biotechnol Bioeng 107:802–813

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Abdel-Rahman FH, Alaniz NM, Saleh MA (2013) Nematicidal activity of terpenoids. J Environ Sci Health B Pestic Food Contam Agric Wastes 48:16–22

    Article  CAS  Google Scholar 

  97. Kim S-H, Park E-J, Lee CR, Chun JN, Cho N-H, Kim I-G, Lee S, Kim TW, Park HH, So I, Jeon J-H (2012) Geraniol induces cooperative interaction of apoptosis and autophagy to elicit cell death in PC-3 prostate cancer cells. Int J Oncol 40:1683–1690

    PubMed  CAS  Google Scholar 

  98. Marcuzzi A, Pontillo A, De Leo L, Tommasini A, Decorti G, Not T, Ventura A (2008) Natural isoprenoids are able to reduce inflammation in a mouse model of mevalonate kinase deficiency. Pediatr Res 64:177–182

    Article  PubMed  CAS  Google Scholar 

  99. Marcuzzi A, Zanin V, Kleiner G, Monasta L, Crovella S (2013) Mouse model of mevalonate kinase deficiency: comparison of cytokine and chemokine profile with that of human patients. Pediatr Res 74:266–271

    Article  PubMed  CAS  Google Scholar 

  100. Vasilev N, Schmitz C, Dong L, Ritala A, Imseng N, Häkkinen S, Krol S, Eibl R, Oksman-Caldentey K-M, Bouwmeester H, Fischer R, Schillberg S (2014) Comparison of plant-based expression platforms for the heterologous production of geraniol. Plant Cell Tiss Organ Cult 117:373–380 (in press)

    Google Scholar 

Download references

Acknowledgements

We would like to thank our academic co-operation partners for providing the tobacco BY-2 suspension cell line (Fraunhofer Institute IME, Aachen, Germany), the tobacco VoGES suspension culture (Fraunhofer Institute IME, Aachen, Germany) and the Coryllus avellana suspension cell line (University of Barcelona, Spain). Dr. Tuulikki Seppänen-Laakso is thanked for performing the geraniol analysis. Furthermore, we would like to acknowledge the technical assistance of Johanna Brändli, Nicole Imseng, Lidija Lisica, Airi Hyrkäs and Anna-Liisa Ruskeepää. Appreciation is also extended to Dr. Christian Löffelholz for providing the CFD results for the disposable stirred bioreactors and Sören Werner for proofreading of the manuscript. This research was partially funded by the European Union Seventh Framework ProgramSmartCell (Rational design of plant systems for sustainable generation of value-added industrial products, grant agreement no. 222716) and the EU COST Action FA1006 PlantEngine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsi-Marja Oksman-Caldentey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lehmann, N. et al. (2014). Disposable Bioreactors for Cultivation of Plant Cell Cultures. In: Paek, KY., Murthy, H., Zhong, JJ. (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_2

Download citation

Publish with us

Policies and ethics