Skip to main content

Bioreactor Culture of Shoots and Somatic Embryos of Medicinal Plants for Production of Bioactive Compounds

  • Chapter
  • First Online:
Production of Biomass and Bioactive Compounds Using Bioreactor Technology

Abstract

Plant cell and tissue culture technology has been considered as a powerful tool for the clonal production of medicinal plants. Plant tissue culture is an excellent alternative to traditional methods of plantation, as it offers a controlled supply of biochemicals independent of plant availability. In the past decade, tremendous progress has been made in this area, and its importance has rapidly increased because of increased need for medicinal plant substances as sources of medicine and health food ingredients. Bioreactor culture system was applied for biomass and secondary metabolite production in medicinal plants. The bioreactor system has been also refined to enhance the efficiency in terms of productivity and for cost reduction. For an efficient large-scale bioreactor culture, a perpetual explant source that is stable and fast growing is important, and till now, five types of culture materials have been commonly used: (1) hairy roots, (2) adventitious roots, (3) suspension cells, (4) somatic embryos and (5) multiple shoots. Majority of studies have been conducted on the cell and root cultures for biomass and secondary metabolite production for commercial purposes. In comparison, only limited studies have been conducted on somatic embryo and multiple shoot cultures as sources of medicinal compounds, even though it has been found that intact plants contain more pharmaceutical chemicals than that of the cells or roots. This review provides an updated and comprehensive overview of somatic embryo and multiple shoot induction in various medicinal plants for the production of biomass and secondary compounds. Future perspectives of biomass and bioactive compound production via somatic embryogenesis and shoot culture have been also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2, 4-D:

2, 4-Dichlorophenoxy acetic acid

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

BTBB:

Balloon-type bubble bioreactor

CAT:

Catalase

CI:

Continuous immersion

CIN:

Continuous immersion with net

E&FC:

Ebb and flood culture

EC:

Embryogenic callus

GC-MS:

Gas chromatography and mass spectroscopy

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

HPLC:

High performance liquid chromatography

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

IMA:

Immersion culture with air supply

MDA:

Malondialdehyde

MJ:

Methyl jasmonate

MRC:

Modified raft culture

MS medium:

Murashige and Skoog medium

NAA:

α-Naphthalene acetic acid

RC:

Raft culture

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TDZ:

Thiadiazuron (N-phenyl-N′-(1 2, 3-thiadiazol-yl))

TI:

Temporary immersion

TIN:

Temporary immersion with net

vvm:

Air volume per medium volume per minute

References

  1. Farnsworth NR (1990) An economic and technical assessment of the use of plant cell cultures for natural product synthesis on an industrial scale. In: Bioactive compounds from plants. Ciba Foundation Symposium. Wiley, New York

    Google Scholar 

  2. Forler MW, Cresswell RC, Stafford AM (1990) The role of ethnopharmacology in drug development. In: Bioactive compounds from plants. Ciba Foundation Symposium. Wiley, New York

    Google Scholar 

  3. Routien JR, Nickel LG (1956) Cultivation of plant tissue, US Patent No. 2,747, 334

    Google Scholar 

  4. Chakrabarty D, Park SY, Ali MB, Shin KS, Paek KY (2005) Hyperhydricity in apple: ultrastuctural and physiological aspects. Tree Physiol 26:377–388

    Article  Google Scholar 

  5. Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss Organ Cult 81:287–300

    Article  Google Scholar 

  6. Komai F, Okuse I, Harada T (1996) Somatic embryogenesis and plant regeneration in culture of root segments of spinach (Spinacia oleracea L.). Plant Sci 113:203–208

    Article  CAS  Google Scholar 

  7. Vinocur B, Carmi T, Altman A, Ziv M (2000) Enhanced bud regeneration in aspen (Populus tremula L.) roots cultured in liquid media. Plant Cell Rep 19:1146–1154

    Article  CAS  Google Scholar 

  8. Yu KW, Gao W, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 11:211–215

    Article  CAS  Google Scholar 

  9. Hahn EJ, Kim YS, Yu KW, Jeong CS, Paek KY (2003) Adventitious root cultures of Panax ginseng C.A. Meyer and ginsenoside production through large-scale bioreactor system. J Plant Biotechnol 5:1–6

    Google Scholar 

  10. Park SY, Ahn JK, Lee WY, Murthy HN, Paek KY (2005) Mass production of Eleutherococcus koreanum plantlets via somatic embryogenesis from root cultures and accumulation of eleutherosides in regenerants. Plant Sci 168:1221–1225

    Article  CAS  Google Scholar 

  11. Choi YE, Lee KS, Kim EY, Kim YS, Han JY, Kim HS, Jeong JH, Ko SK (2002) Mass production of Siberian ginseng plantlets through large scale tank culture of somatic embryos. Plant Cell Rep 21:24–28

    Article  CAS  Google Scholar 

  12. Choi YE, Jeong JH, Shin CK (2003) Hormone-independent embryogenic callus production from ginseng cotyledons using high concentrations of NH4NO3 and progress towards bioreactor production. Plant Cell Tiss Organ Cult 72:229–235

    Article  CAS  Google Scholar 

  13. Shohael M, Ali MB, Hahn EJ, Paek KY (2007) Glutathione metabolism and antioxidant responses during Eleutherococcus senticosus somatic embryo development in a bioreactor. Plant Cell Tiss Organ Cult 89:121–129

    Article  CAS  Google Scholar 

  14. Choi YE, Kim JW, Yoon ES (1999) High frequency of plant production via somatic embryogenesis from callus or cell suspension cultures in Eleutherococcus senticosus. Ann Bot 83:309–314

    Article  CAS  Google Scholar 

  15. Choi YE, Yang DC, Yoon ES (1999) Rapid propagation of Eleutherococcus senticosus via direct somatic embryogenesis from explants of seedlings. Plant Cell Tiss Organ Cult 58:93–97

    Article  Google Scholar 

  16. Takayama S, Misawa M (1981) Mass propagation of Begonia hiemalis plantlets by shake culture. Plant Cell Physiol 22:461–467

    CAS  Google Scholar 

  17. Khan MY, Aliabbas A, Kumar V, Rajkumar S (2009) Recent advances in medicinal plant biotechnology. Indian J Biotechnol 8:9–22

    CAS  Google Scholar 

  18. Debnath SC (2009) Zeatin and TDZ-induced shoot proliferation and use of bioreactor in clonal propagation of medicinal herb, rose root (Rhodiola rosea L). J Plant Biochem Biotechnol 18:245–248

    Article  CAS  Google Scholar 

  19. Jain N, Sharma V, Ramawat KG (2012) Shoot culture of Bacopa monnieri: standardization of explant, vessels and bioreactor for growth and antioxidant capacity. Physiol Mol Biol Plants 18:185–190

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Benjamin BD, Roja P, Heble MR, Chadha MS (1987) Multiple shoot cultures of Atropa belladona: effect of physicochemical factors on growth and alkaloid formation. J Plant Nutr 129:129–135

    CAS  Google Scholar 

  21. Lal N, Ahuja PS (1996) Plantlet regeneration from callus in Picrorhiza kurroa Royle ex Benth. – an endangered medicinal plant. Plant Tissue Cult 6:127–134

    Google Scholar 

  22. Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  PubMed  CAS  Google Scholar 

  23. Park SY, Bae EK, Moon HK, Lee H, Kim YW (2011) Physiological changes and gene expression dynamic during somatic embryogenesis of Kalopanax septemlobus. Hortic Environ Biotechnol 52:74–82

    Article  CAS  Google Scholar 

  24. Das DK, Reddy MK, Upadhyaya KC (2002) An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep 20:999–1005

    Article  CAS  Google Scholar 

  25. Kato M (1996) Somatic embryogenesis from immature leaves of in vitro grown tea shoots. Plant Cell Rep 15:920–923

    Article  PubMed  CAS  Google Scholar 

  26. Pinto G, Santos C, Neves L, Araujo C (2002) Somatic embryogenesis and plant regeneration in Eucalyptus globules Labill. Plant Cell Rep 21:208–213

    Article  CAS  Google Scholar 

  27. Kamada H, Ishikawa K, Saga H, Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Cult Lett 10:38–44

    Article  CAS  Google Scholar 

  28. Kamada H, Tachikawa Y, Saitou T, Harada H (1994) Heat stresses induction of carrot somatic embryogenesis. Plant Tissue Cult Lett 11:229–232

    Article  Google Scholar 

  29. Kiyosue T, Takano K, Kamada H, Harada H (1990) Induction of somatic embryogenesis in carrot by heavy metal ions. Can J Bot 68:2301–2303

    Article  CAS  Google Scholar 

  30. Ferrie AMR, Palmer CE, Keller WA (1995) Haploid embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis implants. Kluwer Academic Publishers, Dordrecht, pp 309–344

    Chapter  Google Scholar 

  31. Kumar HGA, Murthy HN (2004) Effect of sugars and amino acids on androgenesis of Cucumis sativus. Plant Cell Tiss Organ Cult 78:201–208

    Article  CAS  Google Scholar 

  32. Park SY, Murthy HN, Paek KY (2000) Mass multiplication of protocorm-like bodies using bioreactor system and subsequent plant regeneration in Phalaenopsis. Plant Cell Tiss Organ Cult 63:67–72

    Article  Google Scholar 

  33. Lian ML, Chakrabarty D, Paek KY (2003) Growth of Lilium oriental hybrid ‘Casa Blanca’ bulblet using bioreactor culture. Sci Hortic 97:41–48

    Google Scholar 

  34. Niemenak N, Saare-Surminski K, Rohsius C, Ndoumou DO, Lieberei R (2008) Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Rep 27:667–676

    Article  PubMed  CAS  Google Scholar 

  35. Ducos JP, Terrier B, Coutois D, Petiard V (2008) Improvement of plastic-based disposable bioreactors for plant science needs. Phytochem Rev 7:607–613

    Article  CAS  Google Scholar 

  36. Hahn EJ, Paek KY (2005) Multiplication of Chrysanthemum shoots in bioreactors as affected by culture method and inoculation density of single node stems. Plant Cell Tiss Organ Cult 81:301–306

    Article  Google Scholar 

  37. Zhou CG, Yang JL, Liu LK, Liang CN, Xia DA, Li CH (2011) Research progress in somatic embryogenesis of Siberian ginseng (Eleutherococcus senticosus Maxim.). J Med Plants Res 5:7140–7145

    CAS  Google Scholar 

  38. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  PubMed  CAS  Google Scholar 

  39. Wang J, Zhang J, Gao W, Wang Q, Yina S, Liu H, Man S (2013) Identification of triterpenoids and flavonoids, step-wise aeration treatment as well as antioxidant capacity of Glycyrrhiza uralensis Fisch. cell. Ind Crop Prod 49:675–681

    Article  CAS  Google Scholar 

  40. Alfermann AW, Petersen M (1995) Natural product formation by plant cell biotechnology. Plant Cell Tiss Organ Cult 43:199–205

    Article  CAS  Google Scholar 

  41. Sajc L, Grubisic D, Vunjak-Novakovic G (2000) Bioreactors for plant engineering: an outlook for further research. Biochem Bioeng J 4:89–99

    Google Scholar 

  42. Alvard D, Côte F, Teisson C (1993) Comparison of methods of liquid medium culture for banana micropropagation. Effects of temporary immersion of explants. Plant Cell Tiss Organ Cult 32:55–60

    Article  Google Scholar 

  43. Park SY, Lee WY, Ahn JK, Kwon YJ, Park HC (2004) High efficiency bioreactor culture system for mass proliferation and bulblet formation of Allium victorialis var. platyphyllum Makino. Kor J Plant Biotechnol 31:127–132

    Article  Google Scholar 

  44. Kim SJ, Dewir YH, Moon HK (2011) Large-scale plantlets conversion from cotyledonary somatic embryos of Kalopanax septemlobus tree using bioreactor cultures. J Plant Biochem Biotechnol 20:241–248

    Article  Google Scholar 

  45. Escalona M, Lorenzo JC, González B, Daquinta M, González JL, Desjardins Y, Borroto CG (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep 18:743–748

    Article  CAS  Google Scholar 

  46. Hempfling T, Preil W (2005) Application of a temporary immersion system in mass propagation of Phalaenopsis. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Berlin, pp 231–242

    Chapter  Google Scholar 

  47. Ahn JK, Park SY, Lee WY, Lee JJ (2005) Effects of growth regulators on adventitious root growth and eleutherosides and chlorogenic acid accumulation in air lift bioreactor cultures of Eleutherococcus koreanum. Kor J Plant Biotechnol 32:57–61

    Article  Google Scholar 

  48. Ahn JK, Park SY, Lee WY, Park YK (2006) Effects of jasmonic acid on root growth and eleutheroside accumulation in adventitious root culture of Eleutherococcus koreanum. J Kor For Soc 95:32–37

    Google Scholar 

  49. Lee WT (1979) Distribution of Acanthopanax plants in Korea. Kor J Pharmacol 10:103–107

    Google Scholar 

  50. Isoda S, Shoji J (1994) Studies on the cultivation of Eleutherococcus senticosus Maxim. II. On the germination and rising of seedling. Nat Med 48:75–81

    Google Scholar 

  51. Ahn SD, Choi EO (1993) Study of the propagation of Acanthopanax plants 1. Effect of growth regulators on rooting in stem cuttings. Kor J Ginseng Sci 16:138–145

    Google Scholar 

  52. Kang HS, Kim YH, Lee CS, Choi I, Pyun KH (1996) Suppression of interleukin-1 and tumor necrosis factor-a production by acanthoic acid, (_)-pimara-9(11), 15-dien-19-oic acid, and its antifibrotic effects in vivo. Cell Immunol 170:212–221

    Article  PubMed  CAS  Google Scholar 

  53. Lee KT, Choi JH, Kim DH, Son KH, Kim WB, Kwon SH, Park HJ (2001) Constituents and the antitumor principle of Allium victorialis var. platyphyllum. Arch Pharm Res 24:44–50

    Article  PubMed  CAS  Google Scholar 

  54. Shin KH, Lee S (2002) The chemistry of secondary products from Acanthopanax species and their pharmacological activities. Nat Prod Sci 8:111–126

    CAS  Google Scholar 

  55. Brekhman II, Dardymov IV (1969) Pharmacological investigation of glycosides from ginseng and Eleutherococcus. Lloydia 32:46–51

    PubMed  CAS  Google Scholar 

  56. Ahn JK, Lee WY, Oh SJ, Park YH (2000) The contents of chlorogenic acid and eleutheroside E in Eleutherococcus senticosus (Rupr. et Maxim.) harms. J Kor Pharmacol Soc 89:216–222

    Google Scholar 

  57. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  58. Akashi R, Hoffmann-Tsay SS (1998) Hoffmann, selection of a super growing legume root culture that permits controlled switching between root cloning and direct embryogenesis. Theor Appl Genet 96:758–764

    Article  CAS  Google Scholar 

  59. Paek KY, Hahn EJ, Son SH (2001) Application of bioreactors large-scale micropropagation systems of plants. In Vitro Cell Dev Biol 37:149–157

    Article  CAS  Google Scholar 

  60. Zobayed SMA, Saxena PK (2003) In vitro grown roots: a superior explant for prolific shoot regeneration of St. John’s wort (Hypericum perforatum L. cv ‘new stem’) in a temporary immersion bioreactor. Plant Sci 165:463–470

    Article  CAS  Google Scholar 

  61. Yeoung YR, Lee MH, Kim BS, Kim HK, Kim JH (2001) Seed germination and soft wood cutting technique of Kanlopanax pictus Nakai. Kor J Plant Resour 14:53–59

    Google Scholar 

  62. Moon HK, Kim YW, Lee JS, Choi YE (2005) Micropropagation of Kalopanax pictus tree via somatic embryogenesis. In Vitro Cell Dev Biol Plant 41:303–330

    Article  Google Scholar 

  63. Sano K, Sanada S, Ida Y, Shoji J (1991) Studies on the constituents of the stem bark of Kalopanax pictus Nakai. Chem Pharm Bull 39:865–870

    Article  CAS  Google Scholar 

  64. Park HJ, Kim DH, Choi JW, Park JH, Han YN (1998) Apotentanti-diabetic agent from Kalopanax pictus. Arch Pharm Res 21:24–29

    Article  PubMed  CAS  Google Scholar 

  65. Kim WB, Kim JG, Lee EA, Kim BH, Kim JK, Lim HT (1996) Plant regeneration from bulb explants of Allium victorialis var. platyphyllum Makino. Kor J Plant Tissue Cult 23:123–127

    Google Scholar 

  66. Lim HT, Lee EA, Kim WB (1996) Plant regeneration of Allium victorialis var. platyphyllum Makino via organogenesis and somatic embryogenesis. HortSci 31:628

    Google Scholar 

  67. Seo BB, Lee SH, Pak JH, Kim IS, Song SD (1996) Karological variation of callus-derived regenerants in Allium victorialis var. platyphyllum. J Plant Biol 39:231–235

    Google Scholar 

  68. Chung IM, Song HK, Yeo MA, Moon HI (2011) Composition and immunotoxicity activity of major essential oils from stems of Allium victorialis L. var. platyphyllum Makino against Aedes aegypti L. Immunopharmacol Immunotoxicol 33:480–483

    Article  PubMed  CAS  Google Scholar 

  69. Shirataki Y, Motohashi N, Tani S, Sunaga K, Sakagami H, Satoh K, Nakashima H, Kanamoto T, Wolfard K, Molnar J (2001) Antioxidative activity of Allium victorialis L. extracts. Anticancer Res 21:3331–3339

    PubMed  CAS  Google Scholar 

  70. Youwei Z, Yonghong P (2007) Changes in antioxidant activity in Rosa rugosa flowers at different stages of development. N Z J Crop Hortic Sci 35:397–401

    Article  CAS  Google Scholar 

  71. Hashidoko Y (1996) The phytochemistry of Rosa rugosa. Phytochemistry 43:535–549

    Article  CAS  Google Scholar 

  72. De Wit JC, Esendam HF, Honkanen JJ, Tuominen U (1990) Somatic embryogenesis and regeneration of flowering plants in rose. Plant Cell Rep 9:456–458

    Article  PubMed  Google Scholar 

  73. Rout GR, Debata BK, Das P (1991) Somatic embryogenesis in callus culture of Rosa hybrid L. cv landora. Plant Cell Tiss Organ Cult 27:65–69

    Article  CAS  Google Scholar 

  74. Clemencia N, Söndahl M (1991) Somatic embryogenesis in hybrid tea roses. Biotechnol 9:991–993

    Article  Google Scholar 

  75. Marchant R, Davey MR, Lucas JA, Power JB (1996) Somatic embryogenesis and plant regeneration in Floribunda rose (Rosa hybrida L.) cvs. Trumpeter and Glad Tidings. Plant Sci 120:95–105

    Article  Google Scholar 

  76. Kim SW, Oh SC, In DS, Liu JR (2003) High frequency somatic embryogenesis and plant regeneration in zygotic embryo cultures of Japanese honey suckle. Plant Cell Tiss Organ Cult 72:277–280

    Article  CAS  Google Scholar 

  77. Altiner D, Kiliçgün H (2008) The antioxidant effect of Rosa rugosa. Drug Metabol Drug Interact 23:323–327

    Article  PubMed  CAS  Google Scholar 

  78. Ng TB, Gao W, Li L, Niu SM, Zhao L, Liu J, Shi LS, Fu M, Liu F (2005) Rose (Rosa rugosa)-flower extract increases the activities of antioxidant enzymes and their gene expression and reduces lipid peroxidation. Biochem Cell Biol 83:78–85

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Authors are thankful to financial support of Ministry of Knowledge Economy (Project No. 10043192)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So-Young Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Park, SY., Paek, KY. (2014). Bioreactor Culture of Shoots and Somatic Embryos of Medicinal Plants for Production of Bioactive Compounds. In: Paek, KY., Murthy, H., Zhong, JJ. (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_14

Download citation

Publish with us

Policies and ethics