Skip to main content

Production of Bioactive Compounds from Somatic Embryo Suspension Cultures of Siberian Ginseng in Bioreactors

  • Chapter
  • First Online:
Production of Biomass and Bioactive Compounds Using Bioreactor Technology

Abstract

Eleutherococcus senticosus (Rupr. & Maxim.) Maxim (Acanthopanax senticosus), popularly known as ‘Siberian ginseng’, is a woody medicinal plant which is used in traditional medicine as an adaptogen. It is marketed throughout the world as a health supplement. The major active ingredients are lignan glycosides called eleutherosides. Efforts have been made recently to produce bioactive compounds from suspension cultures of somatic embryos. Bioreactor cultures have been established for the production of embryogenic biomass and bioactive compounds. In this review, we have presented bioreactor scale production of bioactive compounds and explained various bioprocess strategies for the production of eleutheroside B, E, E1 and chlorogenic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2 4-D:

2, 4-Dichlorophenoxy acetic acid

C2H4 :

Ethylene

CO2 :

Carbon dioxide

DW:

Dry weight

FW:

Fresh weight

GA3 :

Gibberellic acid

MJ:

Methyl jasmonate

MS medium:

Murashige and Skoog medium

O2 :

Oxygen

vvm:

Air volume per medium volume per minute

References

  1. Davydov M, Krikorian AD (2000) Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: a closer look. J Ethnopharmacol 72:345–393

    Article  PubMed  CAS  Google Scholar 

  2. Lin SY, De LL, Kwan HS (2011) Eleutherococcus senticosus as a crude medicine: review of biological and pharmacological effects. J Med Plants Res 5:5946–5952

    Google Scholar 

  3. Huang L, Zhao H, Huang B, Zheng C, Peng W, Qin L (2011) Acanthopanax senticosus: review of botany, chemistry and pharmacology. Pharmazie 66:83–97

    PubMed  CAS  Google Scholar 

  4. Lee S, Shin KH (2002) The chemistry of secondary products from Acanthopanax species and their pharmacological activities. Nat Prod Sci 8:111–126

    Google Scholar 

  5. Paek KY, Murthy HN, Hahn EJ, Zhong JJ (2009) Large scale culture of ginseng adventitious root for production of ginsenosides. Adv Biochem Eng Biotechnol 113:151–176

    PubMed  CAS  Google Scholar 

  6. Wu CH, Murthy HN, Hahn EJ, Paek KY (2007) Large scale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of chichoric acid, chlorogenic acid and caftaric acid. Biotechnol Lett 29:1179–1182

    Article  PubMed  CAS  Google Scholar 

  7. Min JY, Jung HY, Kang SM, Kim YD, Kang YM, Park DJ, Prasad DT, Choi MS (2007) Production of tropane alkaloids by small-scale bubble column bioreactors of Scopolia parviflora adventitious root. Bioresour Technol 98:1748–1753

    Article  PubMed  CAS  Google Scholar 

  8. Shohael AM, Chakrabarty D, Yu KW, Hahn EJ, Paek KY (2005) Application of bioreactor system for large-scale production of Eleutherococcus sessiliflorus somatic embryos in an airlift bioreactor and production of eleutherosides. J Biotechnol 120:228–236

    Article  PubMed  CAS  Google Scholar 

  9. Park SY, Ahn JW, Lee WY, Murthy HN, Paek KY (2005) Mass production of Eleutherococcus koreanum plantlets via somatic embryogenesis from root cultures and accumulation of eleutherosides in regenerants. Plant Sci 168:1221–1225

    Article  CAS  Google Scholar 

  10. Jeong JA, Wu CH, Murthy HN, Hahn EJ, Paek KY (2009) Application of airlift bioreactor system for the production of adventitious root biomass and caffeic acid derivatives of Echinacea purpurea. Biotechnol Bioprocess Eng 14:91–98

    Article  CAS  Google Scholar 

  11. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  12. McDonald KA, Jackman AP (1989) Bioreactor studies of growth and nutrient utilization in alfalfa suspension cultures. Plant Cell Rep 8:455–458

    Article  PubMed  CAS  Google Scholar 

  13. Ryu DDY, Lee SO, Romani RJ (1990) Determination of specific growth rate for plant cell cultures: comparative studies. Biotechnol Bioeng 35:305–311

    Article  PubMed  CAS  Google Scholar 

  14. Taya M, Hegglin M, Prenosil JE, Bourne JR (1989) Online monitoring of cell growth in plant tissue cultures by conductivity. Enzyme Microb Technol 11:170–176

    Article  CAS  Google Scholar 

  15. Kim YS, Hahn EJ, Murthy HN, Paek KY (2004) Adventitious root growth and ginsenosides accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnol Lett 26:1619–1622

    Article  PubMed  CAS  Google Scholar 

  16. Thanh NT, Murthy HN, Hahn EJ, Paek KY (2005) Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Appl Microbiol Biotechnol 67:197–201

    Article  PubMed  CAS  Google Scholar 

  17. Kim YS, Hahn EJ, Paek KY (2004) Effects of various bioreactors on growth and ginsenoside accumulation in ginseng adventitious root cultures (Panax ginseng C.A. Meyer). Korean J Plant Biotechnol 31:249–253

    Article  Google Scholar 

  18. Blazej M, Kisa M, Markos J (2004) Scale influence on the hydrodynamics of an internal loop airlift reactor. Chem Eng Process 43:1519–1527

    Article  CAS  Google Scholar 

  19. Lee CWT, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cell. Biotechnol Bioeng 67:61–71

    Article  PubMed  CAS  Google Scholar 

  20. Huang SY, Hung CH, Chou SN (2004) Innovative strategies for operation of mist trickling reactors for enhanced hairy root proliferation and secondary metabolite productivity. Enzyme Microb Technol 35:22–32

    Article  CAS  Google Scholar 

  21. ten Hoopen HJG, Vinke JL, Moreno PRH, Verpoorte R, Heijneen JJ (2002) Influence of temperature on growth and ajmalicine production by Catharanthus roseus suspension cultures. Enzyme Microb Technol 68:89–99

    Google Scholar 

  22. Yu KW, Murthy HN, Hahn EJ, Paek KY (2005) Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light. Biochem Eng J 23:53–56

    Article  CAS  Google Scholar 

  23. Gao JW, Lee JM (1992) Effect of oxygen supply on the suspension culture of genetically modified tobacco cells. Biotechnol Prog 8:285–290

    Article  PubMed  CAS  Google Scholar 

  24. Han JH, Zhong JJ (2003) Effect of partial pressure on cell growth and ginsenoside and polysaccharide production in high density cell cultures of Panax notoginseng. Enzyme Microb Technol 32:213–217

    Article  Google Scholar 

  25. Thanh NT, Murthy HN, Yu KW, Jeong CS, Hahn EJ, Paek KY (2005) Effect of oxygen supply on cell growth and saponin production in bioreactor cultures of Panax ginseng. J Plant Physiol 163:1337–1341

    Article  Google Scholar 

  26. Maurel B, Pareilleux A (1985) Effect of carbon dioxide on the growth of cell suspensions of Catharanthus roseus. Biotechnol Lett 7:313–318

    Article  CAS  Google Scholar 

  27. Stuhlfauth T, Klug K, Fock HP (1987) The production of secondary metabolites by Digitalis lanata during CO2 enrichment and water stress. Phytochemistry 26:2735–2739

    Article  CAS  Google Scholar 

  28. Thanh NT, Murthy HN, Pandey DM, Yu KW, Hahn EJ, Paek KY (2006) Effect of carbon dioxide on cell growth and saponin production in suspension cultures of Panax ginseng. Biol Plant 50:752–754

    Article  CAS  Google Scholar 

  29. Kim DM, Pedersen H, Chin CK (1991) Cultivation of Thalictrum rugosum cell suspension in an improved airlift bioreactor: stimulatory effect of carbon dioxide and ethylene on alkaloid production. Biotechnol Bioeng 38:331–339

    Article  PubMed  CAS  Google Scholar 

  30. Kobayashi Y, Hara M, Fukui H, Tabata M (1991) The role of ethylene in berberine production by Thalictrum minus cell suspension cultures. Phytochemistry 30:3605–3609

    Article  CAS  Google Scholar 

  31. Krewzaler F, Hahlbrock K (1976) Flavonoid glycosides from illuminated cell suspension cultures of Petroselinum hortense. Phytochemistry 12:1149–1152

    Article  Google Scholar 

  32. Shin KS, Murthy HN, Heo JW, Paek KY (2004) Induction of betalain pigmentation in hairy roots of red beet under different radiation sources. Biol Plant 47:149–152

    Article  Google Scholar 

  33. Zhong JJ, Yoshida T (1993) Effects of temperature on cell growth and anthocyanin production by suspension cultures of Perilla frutescens cells. J Ferment Bioeng 76:530–531

    Article  CAS  Google Scholar 

  34. Tabata M, Mizukami H, Hirooka N, Konoshima M (1974) Pigment formation in callus cultures of Lithospermum erythrorhizon. Phytochemistry 13:927–932

    Article  CAS  Google Scholar 

  35. Zhao J, Davis LC, Verpporte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  PubMed  CAS  Google Scholar 

  36. Wu J, Lin L (2003) Enhancement of taxol production and release in Taxus chinensis cell cultures by ultrasound, methyl jasmonate and in situ solvent extraction. Appl Microbiol Biotechnol 62:151–155

    Article  PubMed  CAS  Google Scholar 

  37. Yu KW, Gao YN, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 11:211–215

    Article  CAS  Google Scholar 

  38. Thanh NT, Murthy HN, Yu KW, Hahn EJ, Paek KY (2005) Methyl jasmonate elicitation enhanced synthesis ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Appl Microb Biotechnol 67:197–201

    Article  CAS  Google Scholar 

  39. Shohael AM, Murthy HN, Hahn EJ, Paek KY (2007) Methyl jasmonate induced overproduction of eleutherosides in somatic embryos of Eleutherococcus senticosus cultured in bioreactors. Electron J Biotechnol 10:633–637

    Article  Google Scholar 

  40. Szolomicki S, Samochowiec L, Wojciki J, Drozdzik M (2000) The influence of active components of Eleutherococus senticosus on cellular defense and physical fitness in man. Phytother Res 14:3035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Mohammad Shohael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shohael, A.M., Khatun, S.M., Murthy, H.N., Paek, KY. (2014). Production of Bioactive Compounds from Somatic Embryo Suspension Cultures of Siberian Ginseng in Bioreactors. In: Paek, KY., Murthy, H., Zhong, JJ. (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_13

Download citation

Publish with us

Policies and ethics