Skip to main content

Production of Adventitious Root Biomass and Bioactive Compounds from Hypericum perforatum L. Through Large Scale Bioreactor Cultures

  • Chapter
  • First Online:

Abstract

Hypericum perforatum L. (St. John’s wort) is a traditional medicinal plant with antidepressive and woundhealing properties. It contains a lot of constituents with documented biological activity including phenolics, a broad range of flavonoids, naphthodianthrones and phloroglucinols. In recent years plant cell, tissue and organ cultures have been developed as an important alternative sources for the production of high value secondary metabolites. The adventitious roots of H. perforatum are regarded as an effective means of biomass production due to their fast growth rates and stable metabolite productivity. To determine optimal culture conditions for the bioreactor culture of H. perforatum adventitious roots, experiments have been conducted on various chemical and physical parameters in flasks and bioreactors. Adoption of elicitation methods have shown enhancement in the accumulation of total phenolics and flavonoids. Based on these results, a large scale bioreactor system at the industrial level (100 and 500 L) was established for the production of biomass and secondary metabolites from the adventitious root cultures. To investigate the usefulness of the adventitious root cultures for the production of secondary metabolites, comparison of ploidy level and the contents of total phenolics and flavonoids in adventitious roots and field-grown plant was conducted. In addition, identification of the major constituents in adventitious roots (hypericin, hyperin, quercetin and chlorogenic acid) were analyzed by Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry (LC-MS/MS). Moreover, 12 isolated phenolic compounds from root cultures were evaluated for anti-inflammatory effects [Nuclear factor kappa B (NF-κB) inhibition and Peroxisome proliferator-activated receptor (PPAR) activation effects] and five xanthones of them were also tested for antioxidant and anticancer activities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABTS:

2, 2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)

B5:

Gamborg

BA:

N6-benzyladenine

BTBB:

Balloon type bubble bioreactor

DCFDA:

2′,7′-dichlorfluorescein-diacetate

DPPH:

1, 1-diphenyl-2-picrylhydrazyl

DW:

Dry weight

EC:

Electrical conductivity

ESI:

Electrospray ionization

FW:

Fresh weight

H2O2 :

Hydrogen peroxide

HepG2:

Human hepatocarcinoma

IAA:

Indole-3-acetic acid

IBA:

Indole butyric acid

LC:

Liquid chromatography

LH:

Lactoalbumin hydrolysate

MDA:

Malondialdehyde

MJ:

Methyl jasmonate

MS:

Murashige and Skoog

MS/MS:

Tandem mass spectrometry

NAA:

1-naphthalene acetic acid

NF-κB:

Nuclear factor kappa B

PGR:

Plant growth regulator

PPAR:

Peroxisome proliferator-activated receptor

ROS:

Reactive oxygen species

SA:

Salicylic acid

TDZ:

Thidiazuron

TNF-α:

Tumor necrosis factor alpha

vvm:

Air volume · culture volume−1 · min−1

References

  1. Barnes J, Anderson LA, Phillipson JD (2001) St. John’s wort (Hypericum perforatum L.): a review of its chemistry, pharmacology, and clinical properties. J Pharm Pharmacol 53:583–600

    Article  PubMed  CAS  Google Scholar 

  2. Miller AL (1998) St. John’s wort (Hypericum perforatum): clinical effects on depression and other conditions. Altern Med Rev 3:18–26

    PubMed  CAS  Google Scholar 

  3. Nahrstedt A, Butterweck V (1997) Biologically active and other chemical constituents of the herb of Hypericum perforatum. Pharmacopsychiatry 30:129–134

    Article  PubMed  CAS  Google Scholar 

  4. Butterweck V, Schmidt M (2007) St. John’s wort: role of active compounds for its mechanism of action and efficacy. Wien Med Wochenschr 157:356–361

    Article  PubMed  Google Scholar 

  5. Butterweck V, Jurgenliemk G, Nahrstedt A, Winterhoff H (2000) Flavonoids from Hypericum perforatum show antidepressant activity in the forced swimming test. Planta Med 66:3–6

    Article  PubMed  CAS  Google Scholar 

  6. Linde K (2009) St. John’s wort – an overview. Forsch Komplementmed 16:146–155

    Article  PubMed  Google Scholar 

  7. Mccoy JA, Camper ND (2002) Development of a micropropagation protocol for St. John’s wort (Hypericum Perforatum L.). Hortic Sci 37:978–980

    CAS  Google Scholar 

  8. Zobayed SMA, Murch SJ, Rupasinghe HPV, Saxena PK (2004) In vitro production and chemical characterization of St. John’s wort (Hypericum perforatum L. cv ‘New Stem’). Plant Sci 166:333–340

    Article  CAS  Google Scholar 

  9. Paek KY, Murthy HN, Hahn EJ, Zhong JJ (2009) Large scale culture of ginseng adventitious roots for production of ginsenosides. Adv Biochem Eng/Biotechnol 113:151–176

    CAS  Google Scholar 

  10. Wu CH, Murthy HN, Hahn EJ, Paek KY (2007) Large-scale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of chichoric acid, chlorogenic acid and caftaric acid. Biotechnol Lett 29:1179–1182

    Article  PubMed  CAS  Google Scholar 

  11. Min JY, Jung HY, Kang SM, Kim YD, Kang YM, Park DJ, Prasad DT, Choi MS (2007) Production of tropane alkaloids by small-scale bubble column bioreactor cultures of Scopolia parviflora adventitious roots. Bioresour Technol 98:1748–1753

    Article  PubMed  CAS  Google Scholar 

  12. Zobayed SMA, Saxena PK (2003) In vitro-grown roots: a superior explant for prolific shoot regeneration of St. John’s wort (Hypericum perforatum L. cv ‘New Stem’) in a temporary immersion bioreactor. Plant Sci 165:463–470

    Article  CAS  Google Scholar 

  13. Walker TS, Bais HP, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293

    Article  PubMed  CAS  Google Scholar 

  14. Conceição LFR, Ferreres F, Tavares RM, Dias ACP (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 67:149–155

    Article  PubMed  Google Scholar 

  15. Yu KW, Hahn EJ, Paek KY (2000) Production of adventitious ginseng roots using bioreactors. Korean J Plant Tissue Cult 27:309–315

    Google Scholar 

  16. Wu CH, Dewir YH, Hahn EJ, Paek KY (2006) Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. J Plant Biol 49:193–199

    Article  CAS  Google Scholar 

  17. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:150–158

    Article  Google Scholar 

  18. Dornenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb Technol 17:674–684

    Article  Google Scholar 

  19. Chan LK, Dewi PR, Boey PL (2005) Effect of plant growth regulators on regeneration of plantlets from bud cultures of Cymbopogon nardus L. and the detection of essential oils from the in vitro plantlets. J Plant Biol 48:142–145

    Article  CAS  Google Scholar 

  20. Kim OT, Kim M, Huh SM, Hwang B (2004) Effect of growth regulators on asiaticoside production in whole plant cultures of Centella asiatica (L.). Urban J Plant Biol 47:361–365

    Article  CAS  Google Scholar 

  21. Lee EJ, Mobin ME, Hahn EJ, Paek KY (2006) Effects of sucrose, inoculum density, auxins and aeration volume on cell growth of Gymmema sylvestre. J Plant Biol 49:427–431

    Article  CAS  Google Scholar 

  22. Kim YS, Hahn EJ, Yeung EC, Paek KY (2003) Lateral root development and saponin accumulation as affected by IBA or NAA in adventitious root cultures of Panax ginseng C.A. Meyer. In Vitro Cell Dev Biol Plant 39:245–249

    Article  CAS  Google Scholar 

  23. Lee EJ (2009) Biomass and bioactive compounds production through bioreactor cultures of adventitious roots in Eleutherococcus koreanum. PhD thesis, Chungbuk National University, Cheong-Ju

    Google Scholar 

  24. Narayan MS, Thimmaraju R, Bhagyalakshmi N (2005) Interplay of growth regulators during solid-state and liquid-state batch cultivation of anthocyanin producing cell line of Daucus carota. Process Biochem 40:351–358

    Article  CAS  Google Scholar 

  25. Kim YS (2002) Production of ginsenosides through bioreactor cultures of adventitious roots in Ginseng (Panax ginseng C.A. Meyer). PhD thesis, Chungbuk National University, Cheong-Ju

    Google Scholar 

  26. George EF, Puttock DJM, Geroge HJ (1988) Plant culture media: commentary and analysis, vol 2. Exegetics, Edington

    Google Scholar 

  27. Lian ML, Chakrabarty D, Paek KY (2002) Effect of plant growth regulators and medium composition on cell growth and saponin production during cell suspension culture of mountain ginseng (Panax ginseng C.A. Mayer). J Plant Biol 45:201–206

    Article  CAS  Google Scholar 

  28. Lian ML, Chakrabarty D, Paek KY (2002) Growth and uptake of sucrose and mineral ions by Lilium bulblets during bioreactor culture. J Horticult Sci Biotechnol 77:253–257

    CAS  Google Scholar 

  29. Chakrabarty D, Dewir YH, Hahn EJ, Datta SK, Paek KY (2007) The dynamics of nutrient utilization and growth of apple root stock ‘M9 EMLA’ in temporary versus continuous immersion bioreactors. Plant Growth Regul 51:11–19

    Article  CAS  Google Scholar 

  30. Jeong CS, Chakrabarty D, Hahn EJ, Lee HL, Paek KY (2006) Effect of oxygen, carbon dioxide and ethylene on growth and bioactive compound production in bioreactor culture of ginseng adventitious roots. Biochem Eng J 27:252–263

    Article  CAS  Google Scholar 

  31. Jeong JA, Wu CH, Murthy HN, Hahn EJ, Paek KY (2009) Application of an airlift bioreactor system for the production of adventitious root biomass and caffeic acid derivatives of Echinacea purpurea. Biotechnol Bioprocess Eng 14:91–98

    Article  CAS  Google Scholar 

  32. Tian HQ, Russell SD (1999) Culture-induced changes in osmolality of tobacco cell suspensions using four exogenous sugars. Plant Cell Tiss Organ Cult 55:9–13

    Google Scholar 

  33. Shohael AM, Chakrabarty D, Ali MB, Yu KW, Hahn EJ, Lee HL, Paek KY (2006) Enhancement of eleutherosides production in embryogenic cultures of Eleutherococcus sessiliflorus in response to sucrose-induced osmotic stress. Process Biochem 41:512–518

    Article  CAS  Google Scholar 

  34. Al-Khayri JM, Al-Bahrany AM (2002) Callus growth and proline accumulation in response to sorbitol and sucrose-induced osmotic stress in rice. Biol Plant 45:609–611

    Article  CAS  Google Scholar 

  35. Price AH, Atherton NM, Hendry GAF (1989) Plants under droughtstress generate activated oxygen. Free Rad Res Commun 8:61–66

    Article  CAS  Google Scholar 

  36. Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  37. Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Júnior RPL, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb.×Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381

    Article  CAS  Google Scholar 

  38. Dewir YH, Chakrabarty D, Ali MB, Hahn EJ, Paek KY (2005) Effects of hydroponic solution EC, substrates, PPF and nutrient scheduling on growth and photosynthetic competence during acclimatization of micropropagated Spathiphyllum plantlets. Plant Growth Regul 46:241–251

    Article  CAS  Google Scholar 

  39. Franklin CI, Dixon RA (1994) Initiation and maintenance of callus and cell suspension cultures. In: Dixon RA, Gonzales RA (eds) Plant cell culture-a practical approach, 2nd edn. IRL Press, Oxford, pp 1–25

    Google Scholar 

  40. Zhang YH, Zhong JJ, Yu JT (1996) Effect of nitrogen source on cell growth and production of ginseng saponin and polysaccharide in suspension cultures of Panax notoginseng. Biotechnol Prog 12:567–571

    Article  CAS  Google Scholar 

  41. Nandwal AS, Maan A, Kundu BS, Sheokand S, Kamboj DV, Sheoran A, Kumar B, Dutta D (2000) Ethylene evolution and antioxidant defense mechanism in Cicer arietinum roots in the presence of nitrate and aminoethoxyvinylglycine. Plant Physiol Biochem 38:709–715

    Article  CAS  Google Scholar 

  42. Wang C, Zhang SH, Wang PF, Hou J, Li W, Zhang WJ (2008) Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.). Hara Aquat Toxicol 87:88–98

    Article  CAS  Google Scholar 

  43. Nimptsch J, Pflugmacher S (2007) Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense. Chemosphere 66:708–714

    Article  PubMed  CAS  Google Scholar 

  44. Berlin J, Sieg S, Strack D, Bokern M, Harms H (1986) Production of betalains by suspension cultures of Chenopodium rubrum L. Plant Cell Tiss Organ Cult 5:163–174

    Google Scholar 

  45. Lee CWT, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67:61–71

    Article  PubMed  CAS  Google Scholar 

  46. Moreno PR, Schlatmann JE, van der Heijden R, Van Gulik WM, ten Hoopen HJG, Verpoorte R, Heijnen JJ (1993) Induction of ajmalicine formation and related enzyme activities in Cathranthus roseus cells: effect of inoculum density. Appl Microbiol Biotechnol 39:42–47

    Article  PubMed  CAS  Google Scholar 

  47. Jeong CS, Murthy HN, Hahn EJ, Lee HL, Paek KY (2009) Inoculum size and auxin concentration influence the growth of adventitious roots and accumulation of ginsenosides in suspension cultures of ginseng (Panax ginseng C.A. Meyer). Acta Physiol Plant 31:219–222

    Article  CAS  Google Scholar 

  48. Ahmed S, Hahn EJ, Paek KY (2008) Aeration volume and photosynthetic photon flux affect cell growth and secondary metabolite contents in bioreactor cultures of Morinda citrifolia. J Plant Biol 51:209–212

    Article  CAS  Google Scholar 

  49. Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioprocess Eng 7:138–149

    Article  CAS  Google Scholar 

  50. Schlatmann JE, Nuutila AM, van Gulik WM, ten Hoopen HGJ, Verpoorte R, Heijnen JJ (1993) Scale up of ajmalicine production by plant cell cultures of Catharanthus roseus. Biotechnol Bioeng 41:253–262

    Article  PubMed  CAS  Google Scholar 

  51. Thanh NT, Murthy HN, Yu KW, Jeong CS, Hahn EJ, Paek KY (2006) Effect of oxygen supply on cell growth and saponin production in bioreactor cultures of Panax ginseng. J Plant Physiol 163:1337–1341

    Article  PubMed  CAS  Google Scholar 

  52. Ryu DDY, Lee SO, Romani RJ (1990) Determination of growth rate for plant cell cultures: comparative studies. Biotechnol Bioeng 35:305–311

    Article  PubMed  CAS  Google Scholar 

  53. Georgiev MI, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83:809–823

    Article  PubMed  CAS  Google Scholar 

  54. Amino SI, Tazawa M (1988) Uptake and utilization of sugars in cultured rice cells. Plant Physiol 29:483–487

    CAS  Google Scholar 

  55. Shin KS, Murthy HN, Ko JY, Paek KY (2002) Growth and betacyanin production by hairy root cultures of Beta vulgaris L. in air lift bioreactors. Biotechnol Lett 24:2067–2069

    Article  CAS  Google Scholar 

  56. Low PS, Merida JR (1996) The oxidative burst in plant defense: function and signal transduction. Physiol Plant 96:533–542

    Article  CAS  Google Scholar 

  57. Gadzovska S, Maury S, Ounnar S, Righezza M, Kascakova S, Refregiers M, Spasenoski M, Joseph C, Hagège D (2005) Identification and quantitation of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem 43:591–601

    Article  PubMed  CAS  Google Scholar 

  58. Tatsis EC, Boeren S, Exarchou V, Troganis AN, Vervoort J, Gerothanassis IP (2007) Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS. Phytochemistry 68:383–393

    Article  PubMed  CAS  Google Scholar 

  59. Wang J, Gao WY, Zhang J, Huang T, Wen TT, Huang LQ (2011) Combination effect of lactoalbumin hydrolysate and methyl jasmonate on ginsenoside and polysaccharide production in Panax quinquefolium L. cells cultures. Acta Physiol Plant 33:861–866

    Article  CAS  Google Scholar 

  60. Wang J, Gao WY, Zhang J, Huang T, Wen TT, Zhang LM, Huang LQ (2011) Production of saponions and polysaccharide in the presence of lactoalbumin hydrolysate in Panax quinquefolium L. cells cultures. Plant Growth Regul 63:217–223

    Article  CAS  Google Scholar 

  61. Janda T, Szalai G, Rios-Gonzalez K, Veisz O, Paldi E (2003) Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci 164:301–306

    Article  CAS  Google Scholar 

  62. Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    Article  PubMed  CAS  Google Scholar 

  63. Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  64. Li W, Ding Y, Quang TH, Thanh Ngan NT, Sun YN, Yan XT, Yang SY, Choi CW, Lee EJ, Paek KY, Kim YK (2013) NF-κB inhibition and PPAR activation by phenolic compounds from Hypericum perforatum L. adventitious root. Bull Korean Chem Soc 34:1407–1413

    Article  CAS  Google Scholar 

  65. Li W, Sun YN, Yan XT, Yang SY, Choi CW, Hyun JW, Kang HK, Paek KY, Kim YH (2013) Isolation of xanthones from adventitious roots of St. John’s wort (Hypericum perforatum L.) and their antioxidant and cytotoxic activities. Food Sci Biotechnol 22:945–949

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Hua Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cui, XH., Murthy, H.N., Paek, KY. (2014). Production of Adventitious Root Biomass and Bioactive Compounds from Hypericum perforatum L. Through Large Scale Bioreactor Cultures. In: Paek, KY., Murthy, H., Zhong, JJ. (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_11

Download citation

Publish with us

Policies and ethics