Skip to main content

Design of Bioreactors for Plant Cell and Organ Cultures

  • Chapter
  • First Online:
Production of Biomass and Bioactive Compounds Using Bioreactor Technology

Abstract

Demands for sustainable supply of plant biomass and/or value added-molecules (incl. native and heterologous therapeutic proteins, specialty proteins and industrial enzymes) have been the driving efforts to develop alternative ways for their bioproduction. Plant cell and organ cultures have been demonstrated an efficient, cost effective and eco-friendly alternative to classical technologies (i.e. by harvest from wild) and chemical (semi)synthesis. The progress has resulted in development of several commercial processes for large-scale production of plant biomass and high value molecules, besides numerous proof-of-concept studies at laboratory- and pilot-scale. This chapter summarizes the bioreactor configurations for plant cell and organ cultures, and attempts to outline the immense potential of plant in vitro culture-based bioprocesses for sustainable supply of biomass and value-added molecules for various purposes along with the major challenges that remain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chisti Y, Moo-Young M (2002) Bioreactors. In: Meyers RA (ed) Encyclopedia of physical science and technology, vol 2. Academic, San Diego, pp 247–271

    Google Scholar 

  2. Georgiev MI, Eibl R, Zhong JJ (2013) Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97:3787–3800

    Article  PubMed  CAS  Google Scholar 

  3. Georgiev MI, Weber J (2014) Bioreactors for plant cells: hardware configuration and internal environment optimization as tools for wider commercialization. Biotechnol Lett 36:1359–1367

    Google Scholar 

  4. Routien JB, Nickell LG (1956) Cultivation of plant tissue. US Patent 2,747,334

    Google Scholar 

  5. Sajc L, Grubisic D, Vunjak-Novakovic G (2000) Bioreactors for plant engineering: an outlook for further research. Biochem Eng J 4:89–99

    Article  Google Scholar 

  6. Veliky IA, Martin SM (1970) A fermenter for plant cell suspension cultures. Can J Microbiol 16:223–226

    Article  PubMed  CAS  Google Scholar 

  7. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  8. Georgiev MI, Weber J, Maciuk A (2009) Bioprocessing plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83:809–823

    Article  PubMed  CAS  Google Scholar 

  9. Kurz WGW, Constabel F (1979) Plant cell culture, a potential source of pharmaceuticals. Adv Appl Microbiol 25:209–240

    Article  PubMed  CAS  Google Scholar 

  10. Kato A, Kawazoe S, Lijima M, Shimizu Y (1976) Continuous culture of tobacco cells. J Ferment Technol 54:82–87

    Google Scholar 

  11. De Luca V, Salim V, Atsumi SM, Yu F (2012) Mining the biodiversity of plants: a revolution in the making. Science 336:1658–1661

    Article  PubMed  Google Scholar 

  12. Onrubia M, Cusido RM, Ramirez K, Hernandez-Vazquez L, Moyano E, Bonfill M, Palazon J (2013) Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivates. Curr Med Chem 20:880–891

    PubMed  CAS  Google Scholar 

  13. Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Georgiev MI (2013) Coming back to nature: plants as a vital source of pharmaceutically important metabolites – part II A. Curr Med Chem 20:851

    PubMed  CAS  Google Scholar 

  15. Food and Agriculture Organization of UN (2009) Global agriculture towards 2050. www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf. Retrieved March 2014

  16. Davies KM, Deroles SC (2014) Prospects for the use of plant cell cultures in food biotechnology. Curr Opin Biotechnol 26:133–140

    Article  PubMed  CAS  Google Scholar 

  17. Lim E-K, Bowles D (2012) Plant production systems for bioactive small molecules. Curr Opin Biotechnol 23:271–277

    Article  PubMed  CAS  Google Scholar 

  18. Zhong JJ (2002) Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 94:591–599

    Article  PubMed  CAS  Google Scholar 

  19. Baque MA, Moh SH, Lee EJ, Zhong JJ, Paek KY (2012) Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnol Adv 30:1255–1267

    Article  PubMed  CAS  Google Scholar 

  20. Huang T-K, McDonald KA (2012) bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 30:398–409

    Article  PubMed  CAS  Google Scholar 

  21. Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598

    Article  CAS  Google Scholar 

  22. Eibl R, Kaiser S, Lombriser R, Eibl D (2010) Disposable bioreactors: the current state of-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86:41–49

    Article  PubMed  CAS  Google Scholar 

  23. Eibl R, Brändli J, Eibl D (2012) Plant cell bioreactors. In: Doelle HW, Rokem S, Berovic M (eds) Biotechnology, encyclopedia of life support systems. EOLSS Publishers, Oxford (www.eolss.net)

    Google Scholar 

  24. Kwon J-Y, Yang Y-S, Cheon S-H, Nam H-J, Jin G-H, Kim D-I (2013) Bioreactor engineering using disposable technology for enhanced production of hCTLA4Ig in transgenic rice cell cultures. Biotechnol Bioeng 110:2412–2424

    Article  PubMed  CAS  Google Scholar 

  25. Raven N, Schillberg S, Kirchhoff J, Brändli J, Imseng N, Eibl R (2011) Growth of BY-2 suspension cells and plantibody production in single-use bioreactors. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 251–261

    Chapter  Google Scholar 

  26. Doran PM (2013) Therapeutically important proteins from in vitro plant tissue culture systems. Curr Med Chem 20(8):1047–1055

    PubMed  CAS  Google Scholar 

  27. Georgiev MI, Ludwig-Mueller J, Weber J, Stancheva N, Bley T (2011) Bioactive metabolites production and stress-related hormones in devil’s claw cell suspension cultures grown in bioreactors. Appl Microbiol Biotechnol 89:1683–1691

    Google Scholar 

  28. Perez JAS, Porcel EMR, Lopez JLC, Sevilla JMF, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124:1–5

    Article  Google Scholar 

  29. Alipieva K, Korkina L, Erdogan Orhan I, Georgiev MI (2014) Verbascoside – a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol Adv. doi:10.1016/j.biotechadv.2014.07.001

  30. Terrier B, Courtois D, Henault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Petiard V (2007) Two new disposable bioreactors for plant cell culture: the wave and undertow bioreactor and the slug bubble bioreactor. Biotechnol Bioeng 96:914–923

    Article  PubMed  CAS  Google Scholar 

  31. Wolfson W (2013) Grown your own: Protalix BioTherapeutics produces drugs in carrot cells. Chem Biol 20:969–970

    Article  PubMed  CAS  Google Scholar 

  32. Georgiev MI, Ludwig-Mueller J, Bley T (2010) Hairy root culture: copying nature in new bioprocesses. In: Arora R (ed) Medicinal plant biotechnology. CAB International, Wallingford, pp 156–175

    Chapter  Google Scholar 

  33. Murthy HN, Lee E-J, Paek K-Y (2014) Production of secondary metabolites from celland organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tiss Organ Cult 118:1–16

    Google Scholar 

  34. Georgiev MI, Agostini E, Ludwig-Mueller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30(10):528–537

    Article  PubMed  CAS  Google Scholar 

  35. Stiles AR, Liu C-Z (2013) Hairy root culture: bioreactor design and process intensification. Adv Biochem Eng Biotechnol 134:91–114

    PubMed  Google Scholar 

  36. Georgiev MI, Pavlov AI, Bley Th (2006) Betalains by transformed Beta vulgaris roots in stirred tank bioreactor: batch and fed-batch processes. In: Sorvari S, Toldi O (eds) Proceedings of second international congress on bioreactor technology in cell, tissue cultures and biomedical applications. Karhukopio OY, Turku, pp 22–28

    Google Scholar 

  37. Homova V, Weber J, Schulze J, Alipieva K, Bley T, Georgiev M (2010) Devil’s claw hairy root culture in flasks and in a 3-L bioreactor: bioactive metabolite accumulation and flow cytometry. Z Naturforsch 65c:472–478

    Google Scholar 

  38. Lee K-T, Suzuki T, Yamakawa T, Kodama T, Igarashi Y, Shimomura K (1999) Production of tropane alkaloids by transformed root cultures of Atropa belladonna in stirred tank bioreactors with a stainless steel net. Plant Cell Rep 18:567–571

    Article  CAS  Google Scholar 

  39. Palazon J, Mallol A, Eibl R, Lettenbauer C, Cusido RM, Pinol MT (2003) Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69:344–349

    Article  PubMed  CAS  Google Scholar 

  40. Ludwig-Müller J, Georgiev M, Bley T (2008) Metabolite and hormonal status of hairy root cultures of Devil’s claw (Harpagophytum procumbens) in flasks and in a bubble column bioreactor. Process Biochem 43:15–23

    Article  Google Scholar 

  41. Pavlov AI, Georgiev MI, Bley T (2007) Batch and fed-batch production of betalains by Red beet (Beta vulgaris) hairy roots in a bubble column reactor. Z Naturforsch 62c:439–446

    Google Scholar 

  42. Liu C, Towler MJ, Medrano G, Cramer CL, Weathers PJ (2009) Production of mouse interleukin-12 is greater in tobacco hairy roots grown in a mist reactor than in an airlift reactor. Biotechnol Bioeng 102:1074–1086

    Article  PubMed  CAS  Google Scholar 

  43. Georgiev V, Ivanov I, Berkov S, Ilieva M, Georgiev M, Gocheva T, Pavlov A (2012) Galanthamine production by Leucojum aestivum L. shoot culture in a modified bubble column bioreactor with internal sections. Eng Life Sci 12:534–543

    Article  CAS  Google Scholar 

  44. Kim YJ, Weathers PJ, Wyslouzil BE (2002) Growth of Artemisia annua hairy roots in liquid- and gas-phase reactors. Biotechnol Bioeng 80:454–464

    Article  PubMed  CAS  Google Scholar 

  45. Piatczak E, Chmiel A, Wysokinska H (2005) Mist trickling bioreactor for Centaurium erythraea Rafn growth of shoots and production of secoiridoids. Biotechnol Lett 27:721–724

    Article  PubMed  CAS  Google Scholar 

  46. Ramakrishnan D, Curtis WR (2004) Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics and oxygen mass transfer. Biotechnol Bioeng 88:248–260

    Article  PubMed  CAS  Google Scholar 

  47. Georgiev MI, Pavlov A, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74(6):1175–1185

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milen I. Georgiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Georgiev, M.I. (2014). Design of Bioreactors for Plant Cell and Organ Cultures. In: Paek, KY., Murthy, H., Zhong, JJ. (eds) Production of Biomass and Bioactive Compounds Using Bioreactor Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9223-3_1

Download citation

Publish with us

Policies and ethics