Skip to main content

The Classical Formulations of Dynamics of Hamilton and Lagrange

  • Chapter
  • First Online:
Geometry from Dynamics, Classical and Quantum

Abstract

The present chapter is perhaps the place where our discourse meets more neatly the classic textbooks on the subject. Most classical books concentrate on the description of the formalisms developed by Lagrange and Euler on one side, and Hamilton and Jacobi on the other and commonly called today the Lagrangian and the Hamiltonian formalism respectively. The approach taken by many authors is that of postulating that the equations of dynamics are derived from variational principles (a route whose historical episodes are plenty of lights and shadows [Ma84]).

On ne trouvera point de Figures dans set Ouvrage. Les méthodes que j’y expose ne demandent ni constructions, ni raisonnements géométriqus ou méchaniques, mais seulement des opérations algébriques, assujetties à une march réguliere et uniforme.

Joseph-Louis Lagrange, Mécanique Analytique, Avertissement de la premiére édition, 1788.

‘The reader will find no figures in this work. The methods which I set forth do not require either constructions or geometrical or mechanical reasonings, but only algebraic operations, subject to a regular and uniform rule of procedure’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The same definitions hold for an infinite-dimensional symplectic linear space without the dimension relations.

  2. 2.

    The argument will work unchanged in the infinite-dimensional instance applying Zorn’s Lemma.

  3. 3.

    Notice that switch from ‘left action’ to ‘right invariance’ in the previous statement. It happens because of \(TR_g \xi _G(h) = \frac{d}{ds} R_g((\exp s\xi ) h) \mid _{s = 0} = \frac{d}{ds} \exp s\xi (hg) = \xi _G(hg)\).

References

  1. Marmo, G., Mukunda, N., Sudarshan, E.C.G.: Relativistic particle dynamics–Lagrangian proof of the no-interaction theorem. Phys. Rev. D 30, 2110–2116 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  2. Jost, R.: Poisson brackets (an unpedagogical lecture). Rev. Mod. Phys. 36, 572–579 (1964)

    Article  ADS  Google Scholar 

  3. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley Publication, Reading (1981)

    Google Scholar 

  4. Saletan, E.J., Cromer, A.H.: Theoretical Mechanics. J. Wiley, New York (1971)

    MATH  Google Scholar 

  5. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd ed.n Benjamin, Reading (1978)

    Google Scholar 

  6. Gordon, W.B.: On the relation between period and energy in periodic dynamical systems. J. Math. Mech. 19, 111–114 (1969)

    MathSciNet  MATH  Google Scholar 

  7. Cushman, R.H.: Notes on Topology and Mechanics. Mathametical Institute, Utrecht (1977)

    Google Scholar 

  8. Smale, S.: Topology and mechanics. Invent. Math. 10, 305–331 (1970)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. de Filippo, S., Landi, G., Marmo, G., Vilasi, G.: Tensor fields defining a tangent bundle structure. Ann. Inst. H. Poincaré 50, 205–218 (1989)

    MATH  Google Scholar 

  10. Marmo, G., Saletan, E.J., Simoni, A., Vitale, B.: Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction. Wiley, Chichester (1985)

    MATH  Google Scholar 

  11. Arnol’d, V.I.: Méthodes mathématiques de la mécanique classique. Ed. Mir, 1976. Mathematical Methods of Classical Mechanics. Springer, Berlin (1989)

    Google Scholar 

  12. Sattinger, D.H., Weaver, O.L.: Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics. Springer, New York (1986)

    Book  MATH  Google Scholar 

  13. Morandi, G., Ferrario, C., Lo, G.: Vecchio, G. Marmo and C. Rubano. The inverse problem in the calculus of variations and the geometry of the tangent bundle. Phys. Rep. 188, 147–284 (1991)

    Article  ADS  Google Scholar 

  14. Choquet-Bruhat, Y., DeWitt-Morette, C.: Analysis, Manifolds and Physics, 2nd edn. North-Holland, Amsterdam (1982)

    Google Scholar 

  15. Crampin, M.: Tangent bundle geometry for Lagrangian dynamics. J. Phys. A Math. Gen. 16, 3772–3775 (1983)

    Google Scholar 

  16. Crampin, M., Ibort, L.A.: Graded Lie algebras of derivations and Ehresmann connections. J. Math. Pures et Appl. 66, 113–125 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Cariñena, J.F., Ibort, A., Marmo, G., Stern, A.: The Feynman problem and the inverse problem for Poisson dynamics. Phys. Rep. 263, 153–212 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  18. Wigner, E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)

    Article  MathSciNet  Google Scholar 

  19. Novikov, S.P.: The Hamiltonian formalism and a many valued analogue of Morse theory. Russ. Math. Surveys. 37, 1–56 (1982)

    Article  MATH  ADS  Google Scholar 

  20. Hughes, R.J.: On Feynman’s proof of the Maxwell equations. Amer. J. Phys. 60, 301–306 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  21. Moreira, I.C.: Comment on ‘Feynman proof of the Maxwell equations’ by R. J. Hughes. Am. J. Phys. 61, 853 (1993)

    Article  ADS  Google Scholar 

  22. Ibort, A., Marín-Solano, J.: On the inverse problem of the calculus of variations for a class of coupled dynamical systems. Inverse Prob. 7, 713–725 (1991)

    Article  MATH  ADS  Google Scholar 

  23. Currie, D.I., Saletan, E.J.: \(q\)-equivalent particle Hamiltonians. I. The classical one-dimensional case. J. Math. Phys. 7, 967–974 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  24. Henneaux, M., Shepley, L.C.: Lagrangians for spherically symmetric potentials. J. Math. Phys. 23, 2101–2107 (1984)

    Google Scholar 

  25. Ibort, A., López-Lacasta, C.: On the existence of local and Global’s for ordinary differential equations. J. Phys. A: Math. Gen. 23, 4779–4792 (1990)

    Google Scholar 

  26. Dyson, F.J.: Feynman’s proof of the Maxwell equations. Amer. J. Phys. 58, 209–211 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Brinkman, W.F., Cross, M.C.: Spin and orbital dynamics of superfluid \({}^{3} {He}\). In: Brewer, D.F. (ed.) Progress in low temperature physics. North-Holland, Amsterdam (1978)

    Google Scholar 

  28. Balachandran, A.P., Marmo, G., Stern, A. : A Lagrangian approach to the non-interaction theorem. Nuovo Cim. 69 A, 175–186 (1982)

    Google Scholar 

  29. Milne-Thompson, L.M.: Theoretical Hydrodynamics. MacMillan, London (1960)

    Google Scholar 

  30. Weinstein, A.: A universal phase space for particles in Yang-Mills fields. Lett. Math. Phys. 2, 417–20 (1978)

    Article  MATH  ADS  Google Scholar 

  31. Sternberg, S.: On minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field. Proc. Nat. Acad. Sci. 74, 5253–5254 (1977)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  33. Alekseevsky, D., Grabowski, J., Marmo, G., Michor, P.W.: Poisson structures on the cotangent bundle of a Lie group or a principal bundle and their reductions. J. Math. Phys. 35, 4909–4927 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Grabowski, J., Marmo, G., Perelomov, A.: Poisson structures: towards a classification. Modern Phys. Lett. A 8, 1719–1733 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. J.L. Koszul. Crochets de Schouten-Nijenhuis et cohomologie. Astérisque, Soc. Math. de France, hors of série, 257–71 (1985)

    Google Scholar 

  36. Cariñena, J.F., Ibort, L.A., Marmo, G., Perelomov, A.M.: The geometry of Poisson manifolds and Lie algebras. J. Phys. A: Math. Gen. 27, 7425–7449 (1994)

    Article  MATH  ADS  Google Scholar 

  37. Sklyanin, E.K.: Some algebraic structures connected with the YangBaxter equation. Funct. Anal. Appl. 16, 263–270 (1982)

    Google Scholar 

  38. Ya. I. Granovski, I. M. Lutzenko, A. S. Zhedanov. Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. of Phys. 217, 1–20 (1992)

    Google Scholar 

  39. Ahluwalia, K.S.: Fundamentals of Poisson Lie Groups with Application to the Classical Double. Cambridge preprint DAMTP 93–53 (1993). hep-th/9310068

  40. Takhtajan, L.: Introduction to quantum group and integrable massive models of quantum field theory. In: Ge, M.-L., Zhao, B.-H. (eds.) World scientific, Singapore (1990)

    Google Scholar 

  41. Majid, S.: On \(q\)-regularization. Int. J. Mod. Phys. 5, 4689–4696 (1990)

    Google Scholar 

  42. Tjin, T: Introduction to quantized Lie groups and Lie algebras. Int. J. Mod. Phys. A 7, 6175–6214 (1992)

    Google Scholar 

  43. Marmo, G., Simoni, A., Stern, A.: Poisson Lie group symmetries for the isotropic rotator. Int. J. Mod. Phys. A 10, 99–114 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Stern, A., Yakushin, I.: Deformation quantization of the isotropic rotator. Mod. Phys. Lett. A 10, 399–408 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. Drinfel’d, V.G.: Hamiltonian structures on Lie groups, Lie Bialgebras and the geometric meaning of the classical Yang-Baxter equations. Sov. Math. Doklady 27, 68–71 (1983)

    Google Scholar 

  46. Drinfel’d, V.G.: Hamiltonian structures on Lie groups, Lie Bialgebras and the geometric meaning of the classical Yang-Baxter equations. In: Proceedings of the International Congress on Mathematicians, Berkeley, vol. 1. Academic Press, New York (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José F. Cariñena .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cariñena, J.F., Ibort, A., Marmo, G., Morandi, G. (2015). The Classical Formulations of Dynamics of Hamilton and Lagrange. In: Geometry from Dynamics, Classical and Quantum. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9220-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9220-2_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9219-6

  • Online ISBN: 978-94-017-9220-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics