Skip to main content

Induced Pluripotency for the Study of Disease Mechanisms and Cell Therapy

  • Chapter
  • First Online:
Rare Diseases

Part of the book series: Advances in Predictive, Preventive and Personalised Medicine ((APPPM,volume 6))

  • 1092 Accesses

Abstract

Pluripotent cells including induced pluripotent stem (iPS) cells are regarded as a powerful source for cell therapy, because these cells function both by direct cell replacement and also by paracrine effects. Advantage of iPS cells is also their unlimited availability. In this chapter we characterize the pluripotent state of cells starting from embryonic stem (ES) cells and comparing them with iPS cells. We also describe different ways of using iPS cells: replacement of damaged cells and cell replacement in combination with gene therapy. We summarize recent achievements in these areas and conclude that although the developments are highly promising, there are still potential risks of adverse effects, which need more fundamental research before iPS cell therapy will become a routine clinical practice. One more promising area of iPS cell technology is derivation of these cells from patients with genetic or other disorders and use of them as a “human cell model of human disease” to understand the mechanisms of the disease and to possibly find new chemicals to correct the defective pathways. This approach has already led to discoveries of new routes to medical treatments and potentially will form a new and efficient basis for personalized therapy of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

6-hydroxydopamine

ADA-SCID:

Adenosine deaminase deficiency-related severe combined immunodeficiency

ALS:

Amyotrophic lateral sclerosis

BMD:

Becker muscular dystrophy

DA neurons:

Dopaminergic neurons

DMD:

Duchenne muscular dystrophy

DS:

Down syndrome

ES cells:

Embryonic stem cells

FA:

Fanconi anemia

FACS:

Fluorescence-activated cell sorting

FD:

Familial dysautonomia

FDA:

Food and Drug Administration

FXS:

Fragile X syndrome

GABA:

Gamma aminobutyric acid

GD:

Gaucher disease

HD:

Huntington disease

ICM:

Inner Cell Mass

iPS cells:

Induced pluripotent stem cells

JDM:

Juvenile-onset type 1 diabetes mellitus mRNA – micro RNA

NCAM:

Neural cell adhesion molecule

NT:

Nuclear transfer

PD:

Parkinson’s Disease

PGD:

Preimplantation genetic diagnosis

ROS:

Reactive Oxygen Species

RTT:

Rett syndrome

SBDS:

Shwachman-Bodian-Diamond syndrome

SCNT:

Somatic Cell Nuclear Transfer

SMA:

Spinal muscular atrophy

TALEN:

Transcription activator–like effector nuclease

T1D:

Type 1 diabetes

X-CGD:

X-linked chronic granulomatous disease

ZFN:

Zinc-finger nucleases

References

  1. Waddington CH (1957) The strategy of the genes: a discussion of some aspects of theoretical biology. Allen & Unwin, London

    Google Scholar 

  2. Gurdon J (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640

    CAS  PubMed  Google Scholar 

  3. Wray J, Kalkan T, Smith AG (2010) The ground state of pluripotency. Biochem Soc Trans 38:1027–1032

    Article  CAS  PubMed  Google Scholar 

  4. Driesch H (1891) Entwicklungsmechanische Studien I. Der Wert der ersten beiden Furchungszellen in der Echinodermenentwickelung Experimentelle Erzeugung von Teil und Doppelbildungen. Ztschr f Wiss Zool 53:160–183

    Google Scholar 

  5. Evans M, Kaufman M (1981) Establishment in culture of pluripotent cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  6. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  8. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705

    Article  CAS  PubMed  Google Scholar 

  9. Armstrong L, Lako M, Buckley N, Lappin TRJ, Murphy MJ, Nolta JA, Pittenger M, Stojkovic M (2012) Editorial: our top 10 developments in stem cell biology over the last 30 years. Stem Cells 30:2–9

    Article  CAS  PubMed  Google Scholar 

  10. Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132:567–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Loh KM, Lim B (2011) A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell 8:363–369

    Article  CAS  PubMed  Google Scholar 

  12. Kaufman MH, Webb S (1990) Postimplantation development of tetraploid mouse embryos produced by electrofusion. Development 110:1121–1132

    CAS  PubMed  Google Scholar 

  13. Verlinsky Y, Strelchenko N, Kukharenko V, Rechitsky S, Verlinsky O, Galat V, Kuliev A (2005) Human embryonic stem cell lines with genetic disorders. Reprod Biomed Online 10:105–110

    Article  CAS  PubMed  Google Scholar 

  14. Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rideout WM 3rd, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109:17–27

    Article  CAS  PubMed  Google Scholar 

  16. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  CAS  PubMed  Google Scholar 

  17. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  CAS  PubMed  Google Scholar 

  18. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  21. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  22. Mali P, Cheng L (2012) Concise review: Human cell engineering: cellular reprogramming and genome editing. Stem Cells 30:75–81

    Article  CAS  PubMed  Google Scholar 

  23. Maimets T, Neganova I, Armstrong L, Lako M (2008) Activation of p53 by nutlin leads to rapid differentiation of human embryonic stem cells. Oncogene 27:5277–5287

    Article  CAS  PubMed  Google Scholar 

  24. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Izpisúa Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460:1132–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lowry WE (2012) Does transcription factor induced pluripotency accurately mimic embryo derived pluripotency? Curr Opin Genet Dev 22:429–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zhao T, Zhang Z-N, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  CAS  PubMed  Google Scholar 

  28. Wernig M, Zhao J-P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 105:5856–5861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, Osborn T, Jaenisch R, Isacson O (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107:15921–15926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A 106:15768–15773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hanna J, Wernig M, Markoulaki S, Sun C-W, Meissner A, Cassady JP, Beard C, Brambrink T, Wu L-C, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  CAS  PubMed  Google Scholar 

  32. Soldner F, Laganière J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146:318–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zou J, Sweeney CL, Chou B-K, Choi U, Pan J, Wang H, Dowey SN, Cheng L, Malech HL (2011) Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117:5561–5572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Li LB, Chang K-H, Wang P-R, Hirata RK, Papayannopoulou T, Russell DW (2012) Trisomy correction in Down syndrome induced pluripotent stem cells. Cell Stem Cell 11:615–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Olson LE, Richtsmeier JT, Leszl J, Reeves RH (2004) A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 306:687–690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nelson DL, Gibbs RA (2004) Genetics. The critical region in trisomy 21. Science 306:619–621

    Article  CAS  PubMed  Google Scholar 

  37. Chen M, Tomkins DJ, Auerbach W, McKerlie C, Youssoufian H, Liu L, Gan O, Carreau M, Auerbach A, Groves T, Guidos CJ, Freedman MH, Cross J, Percy DH, Dick JE, Joyner AL, Buchwald M (1996) Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nat Genet 12:448–451

    Article  CAS  PubMed  Google Scholar 

  38. Onder TT, Daley GQ (2012) New lessons learned from disease modeling with induced pluripotent stem cells. Curr Opin Genet Dev 22:500–508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221

    Article  CAS  PubMed  Google Scholar 

  40. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Marchetto MCN, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Panicker LM, Miller D, Park TS, Patel B, Azevedo JL, Awad O, Masood MA, Veenstra TD, Goldin E, Stubblefield BK, Tayebi N, Polumuri SK, Vogel SN, Sidransky E, Zambidis ET, Feldman RA (2012) Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease. Proc Natl Acad Sci U S A 109:18054–18059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461:402–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Soldner F, Jaenisch R (2012) Medicine. iPSC disease modeling. Science 338:1155–1156

    Article  PubMed  Google Scholar 

  46. Müller LUW, Milsom MD, Harris CE, Vyas R, Brumme KM, Parmar K, Moreau LA, Schambach A, Park I-H, London WB, Strait K, Schlaeger T, Devine AL, Grassman E, D’Andrea A, Daley GQ, Williams DA (2012) Overcoming reprogramming resistance of Fanconi anemia cells. Blood 119:5449–5457

    Article  PubMed Central  PubMed  Google Scholar 

  47. Urbach A, Bar-Nur O, Daley GQ, Benvenisty N (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6:407–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Sheridan SD, Theriault KM, Reis SA, Zhou F, Madison JM, Daheron L, Loring JF, Haggarty SJ (2011) Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One 6:e26203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toivo Maimets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maimets, T. (2015). Induced Pluripotency for the Study of Disease Mechanisms and Cell Therapy. In: Özgüç, M. (eds) Rare Diseases. Advances in Predictive, Preventive and Personalised Medicine, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9214-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9214-1_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9213-4

  • Online ISBN: 978-94-017-9214-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics