Skip to main content

p53: Its Mutations and Their Impact on Transcription

  • Chapter
  • First Online:
Mutant p53 and MDM2 in Cancer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 85))

Abstract

p53 is a tumor suppressor protein whose key function is to maintain the integrity of the cell. Mutations in p53 have been found in up to 50 % of all human cancers and cause an increase in oncogenic phenotypes such as proliferation and tumorigenicity. Both wild-type and mutant p53 have been shown to transactivate their target genes, either through directly binding to DNA, or indirectly through protein-protein interactions. This review discusses possible mechanisms behind both wild-type and mutant p53-mediated transactivation and touches on the concept of addiction to mutant p53 of cancer cells and how that may be used for future therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V, Parenti AR, Rosato A, Bicciato S, Balmain A, Piccolo S (2009) A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137:87–98

    CAS  PubMed  Google Scholar 

  2. Ahrendt SA, Hu Y, Buta M, McDermott MP, Benoit N, Yang SC, Wu L, Sidransky D (2003) p53 mutations and survival in stage I non-small-cell lung cancer: results of a prospective study. J Natl Cancer Inst 95:961–970

    CAS  PubMed  Google Scholar 

  3. Albor A, Kaku S, Kulesz-Martin M (1998) Wild-type and mutant forms of p53 activate human topoisomerase I: a possible mechanism for gain of function in mutants. Cancer Res 58:2091–2094

    CAS  PubMed  Google Scholar 

  4. Aylon Y, Oren M (2011) p53: guardian of ploidy. Mol Oncol 5:315–323

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Baker L, Quinlan PR, Patten N, Ashfield A, Birse-Stewart-Bell LJ, McCowan C, Bourdon JC, Purdie CA, Jordan LB, Dewar JA, Wu L, Thompson AM (2010) p53 mutation, deprivation and poor prognosis in primary breast cancer. Br J Cancer 102:719–726

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y, White R, Vogelstein B (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    CAS  PubMed  Google Scholar 

  7. Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B (1990) Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915

    CAS  PubMed  Google Scholar 

  8. Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384:641–643

    CAS  PubMed  Google Scholar 

  9. Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD, Berger SL (2001) Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8:1243–1254

    CAS  PubMed  Google Scholar 

  10. Beckerman R, Prives C (2010) Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2:a000935

    PubMed  PubMed Central  Google Scholar 

  11. Blandino G, Levine AJ, Oren M (1999) Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477–485

    CAS  PubMed  Google Scholar 

  12. Boehden GS, Akyuz N, Roemer K, Wiesmuller L (2003) p53 mutated in the transactivation domain retains regulatory functions in homology-directed double-strand break repair. Oncogene 22:4111–4117

    CAS  PubMed  Google Scholar 

  13. Boehden GS, Restle A, Marschalek R, Stocking C, Wiesmuller L (2004) Recombination at chromosomal sequences involved in leukaemogenic rearrangements is differentially regulated by p53. Carcinogenesis 25:1305–1313

    CAS  PubMed  Google Scholar 

  14. Borellini F, Glazer RI (1993) Induction of Sp1-p53 DNA-binding heterocomplexes during granulocyte/macrophage colony-stimulating factor-dependent proliferation in human erythroleukemia cell line TF-1. J Biol Chem 268:7923–7928

    CAS  PubMed  Google Scholar 

  15. Bossi G, Lapi E, Strano S, Rinaldo C, Blandino G, Sacchi A (2006) Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene 25:304–309

    CAS  PubMed  Google Scholar 

  16. Bourdon JC, Khoury MP, Diot A, Baker L, Fernandes K, Aoubala M, Quinlan P, Purdie CA, Jordan LB, Prats AC, Lane DP, Thompson AM (2011) p53 mutant breast cancer patients expressing p53gamma have as good a prognosis as wild-type p53 breast cancer patients. Breast Cancer Res 13:R7

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bristow RG, Peacock J, Jang A, Kim J, Hill RP, Benchimol S (2003) Resistance to DNA-damaging agents is discordant from experimental metastatic capacity in MEF ras-transformants-expressing gain of function MTp53. Oncogene 22:2960–2966

    CAS  PubMed  Google Scholar 

  18. Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713

    CAS  PubMed  Google Scholar 

  19. Cadwell C, Zambetti GP (2001) The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 277:15–30

    CAS  PubMed  Google Scholar 

  20. Campling BG, el-Deiry WS (2003) Clinical implications of p53 mutations in lung cancer. Methods Mol Med 75:53–77

    CAS  PubMed  Google Scholar 

  21. Chang C, Simmons DT, Martin MA, Mora PT (1979) Identification and partial characterization of new antigens from simian virus 40-transformed mouse cells. J Virol 31:463–471

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen X, Farmer G, Zhu H, Prywes R, Prives C (1993) Cooperative DNA binding of p53 with TFIID (TBP): a possible mechanism for transcriptional activation. Genes Dev 7:1837–1849

    CAS  PubMed  Google Scholar 

  23. Chin KV, Ueda K, Pastan I, Gottesman MM (1992) Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 255:459–462, New York, N.Y

    CAS  PubMed  Google Scholar 

  24. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355

    CAS  PubMed  Google Scholar 

  25. Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ, Wilder S, Lozano G, Pikarsky E, Forshew T, Rozenfeld N, Harpaz N, Itzkowitz S, Harris CC, Rotter V, Gorgoulis VG, Oren M (2013) Mutant p53 prolongs NF-kappaB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23:634–646

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cordani N, Pozzi S, Martynova E, Fanoni D, Borrelli S, Alotto D, Castagnoli C, Berti E, Vigano MA, Mantovani R (2011) Mutant p53 subverts p63 control over KLF4 expression in keratinocytes. Oncogene 30:922–932

    CAS  PubMed  Google Scholar 

  27. Deb D, Scian M, Roth KE, Li W, Keiger J, Chakraborti AS, Deb SP, Deb S (2002) Hetero-oligomerization does not compromise ‘gain of function’ of tumor-derived p53 mutants. Oncogene 21:176–189

    CAS  PubMed  Google Scholar 

  28. Deb S, Jackson CT, Subler MA, Martin DW (1992) Modulation of cellular and viral promoters by mutant human p53 proteins found in tumor cells. J Virol 66:6164–6170

    CAS  PubMed  PubMed Central  Google Scholar 

  29. DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A 76:2420–2424

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, Blandino G, Piaggio G (2006) Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10:191–202

    PubMed  Google Scholar 

  31. Diller L, Kassel J, Nelson CE, Gryka MA, Litwak G, Gebhardt M, Bressac B, Ozturk M, Baker SJ, Vogelstein B et al (1990) p53 functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol 10:5772–5781

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendl MC, Lawrence MS, Larson DE, Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jhangiani SN, Lewis LR, Hall O, Zhu Y, Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, Metcalf GA, Ng B, Milosavljevic A, Gonzalez-Garay ML, Osborne JR, Meyer R, Shi X, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Pohl C, Fewell G, Haipek C, Schmidt H, Dunford-Shore BH, Kraja A, Crosby SD, Sawyer CS, Vickery T, Sander S, Robinson J, Winckler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson BE, Onofrio RC, Thomas RK, Tonon G, Weir BA, Zhao X, Ziaugra L, Zody MC, Giordano T, Orringer MB, Roth JA, Spitz MR, Wistuba II, Ozenberger B, Good PJ, Chang AC, Beer DG, Watson MA, Ladanyi M, Broderick S, Yoshizawa A, Travis WD, Pao W, Province MA, Weinstock GM, Varmus HE, Gabriel SB, Lander ES, Gibbs RA, Meyerson M, Wilson RK (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, Finlay C, Levine AJ (1993) Gain of function mutations in p53. Nat Genet 4:42–46

    CAS  PubMed  Google Scholar 

  34. Duan W, Gao L, Jin D, Otterson GA, Villalona-Calero MA (2008) Lung specific expression of a human mutant p53 affects cell proliferation in transgenic mice. Transgenic Res 17:355–366

    CAS  PubMed  Google Scholar 

  35. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1:45–49

    CAS  PubMed  Google Scholar 

  36. El-Hizawi S, Lagowski JP, Kulesz-Martin M, Albor A (2002) Induction of gene amplification as a gain-of-function phenotype of mutant p53 proteins. Cancer Res 62:3264–3270

    CAS  PubMed  Google Scholar 

  37. Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M (1989) Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci U S A 86:8763–8767

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Eliyahu D, Raz A, Gruss P, Givol D, Oren M (1984) Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312:646–649

    CAS  PubMed  Google Scholar 

  39. Espinosa JM, Portal D, Lobo GS, Pereira CA, Alonso GD, Gomez EB, Lan GH, Pomar RV, Flawia MM, Torres HN (2003) Trypanosoma cruzi poly-zinc finger protein: a novel DNA/RNA-binding CCHC-zinc finger protein. Mol Biochem Parasitol 131:35–44

    CAS  PubMed  Google Scholar 

  40. Fields S, Jang SK (1990) Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049

    CAS  PubMed  Google Scholar 

  41. Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093

    CAS  PubMed  Google Scholar 

  42. Fiscella M, Ullrich SJ, Zambrano N, Shields MT, Lin D, Lees-Miller SP, Anderson CW, Mercer WE, Appella E (1993) Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression. Oncogene 8:1519–1528

    CAS  PubMed  Google Scholar 

  43. Fogal V, Hsieh JK, Royer C, Zhong S, Lu X (2005) Cell cycle-dependent nuclear retention of p53 by E2F1 requires phosphorylation of p53 at Ser315. EMBO J 24:2768–2782

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fontemaggi G, Dell’Orso S, Trisciuoglio D, Shay T, Melucci E, Fazi F, Terrenato I, Mottolese M, Muti P, Domany E, Del Bufalo D, Strano S, Blandino G (2009) The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol 16:1086–1093

    CAS  PubMed  Google Scholar 

  45. Freed-Pastor WA, Prives C (2012) Mutant p53: one name, many proteins. Genes Dev 26:1268–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Funk WD, Pak DT, Karas RH, Wright WE, Shay JW (1992) A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol 12:2866–2871

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C (2001) A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21:1874–1887

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Giebler HA, Lemasson I, Nyborg JK (2000) p53 recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation. Mol Cell Biol 20:4849–4858

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ginsberg D, Mechta F, Yaniv M, Oren M (1991) Wild-type p53 can down-modulate the activity of various promoters. Proc Natl Acad Sci U S A 88:9979–9983

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, Bergh J, Liu A, Miu K, Watnick RS, Reinhardt F, McAllister SS, Jacks T, Weinberg RA (2008) Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell 134:62–73

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Goh W, Lane D, Ghadessy F (2010) Development of a novel multiplex in vitro binding assay to profile p53-DNA interactions. Cell Cycle 9:3030–3038

    CAS  PubMed  Google Scholar 

  52. Gohler T, Jager S, Warnecke G, Yasuda H, Kim E, Deppert W (2005) Mutant p53 proteins bind DNA in a DNA structure-selective mode. Nucleic Acids Res 33:1087–1100

    PubMed  PubMed Central  Google Scholar 

  53. Grossman SR (2001) p300/CBP/p53 interaction and regulation of the p53 response. Eur J Biochem/FEBS 268:2773–2778

    CAS  Google Scholar 

  54. Gurova KV, Rokhlin OW, Budanov AV, Burdelya LG, Chumakov PM, Cohen MB, Gudkov AV (2003) Cooperation of two mutant p53 alleles contributes to Fas resistance of prostate carcinoma cells. Cancer Res 63:2905–2912

    CAS  PubMed  Google Scholar 

  55. Hamelin R, Laurent-Puig P, Olschwang S, Jego N, Asselain B, Remvikos Y, Girodet J, Salmon RJ, Thomas G (1994) Association of p53 mutations with short survival in colorectal cancer. Gastroenterology 106:42–48

    CAS  PubMed  Google Scholar 

  56. Haupt S, di Agostino S, Mizrahi I, Alsheich-Bartok O, Voorhoeve M, Damalas A, Blandino G, Haupt Y (2009) Promyelocytic leukemia protein is required for gain of function by mutant p53. Cancer Res 69:4818–4826

    CAS  PubMed  Google Scholar 

  57. Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613–626

    CAS  PubMed  Google Scholar 

  58. Hinds P, Finlay C, Levine AJ (1989) Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 63:739–746

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hixon ML, Flores A, Wagner M, Gualberto A (2000) Gain of function properties of mutant p53 proteins at the mitotic spindle cell cycle checkpoint. Histol Histopathol 15:551–556

    CAS  PubMed  Google Scholar 

  60. Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M (2002) Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277:3247–3257

    CAS  PubMed  Google Scholar 

  61. Hsiao M, Low J, Dorn E, Ku D, Pattengale P, Yeargin J, Haas M (1994) Gain-of-function mutations of the p53 gene induce lymphohematopoietic metastatic potential and tissue invasiveness. Am J Pathol 145:702–714

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M, Dobbelstein M, Del Sal G, Piaggio G, Mantovani R (2005) Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25:3737–3751

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG (1999) Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol Cell 3:361–370

    CAS  PubMed  Google Scholar 

  64. Iwamoto KS, Mizuno T, Ito T, Tsuyama N, Kyoizumi S, Seyama T (1996) Gain-of-function p53 mutations enhance alteration of the T-cell receptor following X-irradiation, independently of the cell cycle and cell survival. Cancer Res 56:3862–3865

    CAS  PubMed  Google Scholar 

  65. Iwanaga Y, Jeang KT (2002) Expression of mitotic spindle checkpoint protein hsMAD1 correlates with cellular proliferation and is activated by a gain-of-function p53 mutant. Cancer Res 62:2618–2624

    CAS  PubMed  Google Scholar 

  66. Jenkins JR, Rudge K, Currie GA (1984) Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312:651–654

    CAS  PubMed  Google Scholar 

  67. Johnson RA, Ince TA, Scotto KW (2001) Transcriptional repression by p53 through direct binding to a novel DNA element. J Biol Chem 276:27716–27720

    CAS  PubMed  Google Scholar 

  68. Kalo E, Buganim Y, Shapira KE, Besserglick H, Goldfinger N, Weise L, Stambolsky P, Henis YI, Rotter V (2007) Mutant p53 attenuates the SMAD-dependent TGF-{beta}1 signaling pathway by repressing the expression of TGF-{beta} receptor type II. Mol Cell Biol 27(23):8228–8242

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Katkoori VR, Jia X, Shanmugam C, Wan W, Meleth S, Bumpers H, Grizzle WE, Manne U (2009) Prognostic significance of p53 codon 72 polymorphism differs with race in colorectal adenocarcinoma. Clin Cancer Res 15:2406–2416

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kikuchi-Yanoshita R, Tanaka K, Muraoka M, Konishi M, Kawashima I, Takamoto S, Hirai H, Miyaki M (1995) Malignant transformation of rat embryo fibroblasts by cotransfection with eleven human mutant p53 cDNAs and activated H-ras gene. Oncogene 11:1339–1345

    CAS  PubMed  Google Scholar 

  71. Krause K, Haugwitz U, Wasner M, Wiedmann M, Mossner J, Engeland K (2001) Expression of the cell cycle phosphatase cdc25C is down-regulated by the tumor suppressor protein p53 but not by p73. Biochem Biophys Res Commun 284:743–750

    CAS  PubMed  Google Scholar 

  72. Kress M, May E, Cassingena R, May P (1979) Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol 31:472–483

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lai H, Lin L, Nadji M, Lai S, Trapido E, Meng L (2002) Mutations in the p53 tumor suppressor gene and early onset breast cancer. Cancer Biol Ther 1:31–36

    CAS  PubMed  Google Scholar 

  74. Lai SL, Perng RP, Hwang J (2000) p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells. J Biomed Sci 7:64–70

    CAS  PubMed  Google Scholar 

  75. Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263

    CAS  PubMed  Google Scholar 

  76. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, El-Naggar AK, Lozano G (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119:861–872

    CAS  PubMed  Google Scholar 

  77. Lanyi A, Deb D, Seymour RC, Ludes-Meyers JH, Subler MA, Deb S (1998) ‘Gain of function’ phenotype of tumor-derived mutant p53 requires the oligomerization/nonsequence-specific nucleic acid-binding domain. Oncogene 16:3169–3176

    CAS  PubMed  Google Scholar 

  78. Lee CW, Ferreon JC, Ferreon AC, Arai M, Wright PE (2010) Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proc Natl Acad Sci U S A 107:19290–19295

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee JM, Bernstein A (1993) p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci U S A 90:5742–5746

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lees-Miller SP, Sakaguchi K, Ullrich SJ, Appella E, Anderson CW (1992) Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol 12:5041–5049

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Legube G, Linares LK, Tyteca S, Caron C, Scheffner M, Chevillard-Briet M, Trouche D (2004) Role of the histone acetyl transferase Tip60 in the p53 pathway. J Biol Chem 279:44825–44833

    CAS  PubMed  Google Scholar 

  82. Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Levine AJ, Wu MC, Chang A, Silver A, Attiyeh EF, Lin J, Epstein CB (1995) The spectrum of mutations at the p53 locus. Evidence for tissue-specific mutagenesis, selection of mutant alleles, and a “gain of function” phenotype. Ann N Y Acad Sci 768:111–128

    CAS  PubMed  Google Scholar 

  84. Li B, Lee MY (2001) Transcriptional regulation of the human DNA polymerase delta catalytic subunit gene POLD1 by p53 tumor suppressor and Sp1. J Biol Chem 276:29729–29739

    CAS  PubMed  Google Scholar 

  85. Li M, He Y, Dubois W, Wu X, Shi J, Huang J (2012) Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Mol Cell 46:30–42

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Li Y, Prives C (2007) Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene 26:2220–2225

    CAS  PubMed  Google Scholar 

  87. Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM (1997) Binding and modulation of p53 by p300/CBP coactivators. Nature 387:823–827

    CAS  PubMed  Google Scholar 

  88. Lin J, Teresky AK, Levine AJ (1995) Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Oncogene 10:2387–2390

    CAS  PubMed  Google Scholar 

  89. Linzer DI, Levine AJ (1979) Characterization of a 54 K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52

    CAS  PubMed  Google Scholar 

  90. Linzer DI, Maltzman W, Levine AJ (1979) The SV40 A gene product is required for the production of a 54,000 MW cellular tumor antigen. Virology 98:308–318

    CAS  PubMed  Google Scholar 

  91. Liu G, McDonnell TJ, Montes de Oca Luna R, Kapoor M, Mims B, El-Naggar AK, Lozano G (2000) High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci U S A 97:4174–4179

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK, Multani A, Chang S, Lozano G (2004) Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36:63–68

    CAS  PubMed  Google Scholar 

  93. Liu K, Ling S, Lin WC (2011) TopBP1 mediates mutant p53 gain of function through NF-Y and p63/p73. Mol Cell Biol 31:4464–4481

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL (1999) p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19:1202–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu X, Miller CW, Koeffler PH, Berk AJ (1993) The p53 activation domain binds the TATA box-binding polypeptide in Holo-TFIID, and a neighboring p53 domain inhibits transcription. Mol Cell Biol 13:3291–3300

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lotem J, Sachs L (1995) Interferon-gamma inhibits apoptosis induced by wild-type p53, cytotoxic anti-cancer agents and viability factor deprivation in myeloid cells. Leukemia 9:685–692

    CAS  PubMed  Google Scholar 

  97. Love IM, Sekaric P, Shi D, Grossman SR, Androphy EJ (2012) The histone acetyltransferase PCAF regulates p21 transcription through stress-induced acetylation of histone H3. Cell Cycle 11:2458–2466

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ludes-Meyers JH, Subler MA, Shivakumar CV, Munoz RM, Jiang P, Bigger JE, Brown DR, Deb SP, Deb S (1996) Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol Cell Biol 16:6009–6019

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Maddocks OD, Vousden KH (2011) Metabolic regulation by p53. J Mol Med (Berl) 89:237–245

    CAS  Google Scholar 

  100. Martin DW, Munoz RM, Subler MA, Deb S (1993) p53 binds to the TATA-binding protein-TATA complex. J Biol Chem 268:13062–13067

    CAS  PubMed  Google Scholar 

  101. Martin DW, Subler MA, Munoz RM, Brown DR, Deb SP, Deb S (1993) p53 and SV40 T antigen bind to the same region overlapping the conserved domain of the TATA-binding protein. Biochem Biophys Res Commun 195:428–434

    CAS  PubMed  Google Scholar 

  102. Melero JA, Stitt DT, Mangel WF, Carroll RB (1979) Identification of new polypeptide species (48–55 K) immunoprecipitable by antiserum to purified large T antigen and present in SV40-infected and -transformed cells. Virology 93:466–480

    CAS  PubMed  Google Scholar 

  103. Menendez D, Nguyen TA, Freudenberg JM, Mathew VJ, Anderson CW, Jothi R, Resnick MA (2013) Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells. Nucleic Acids Res 41(15):7286–7301

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Meyer KD, Lin SC, Bernecky C, Gao Y, Taatjes DJ (2010) p53 activates transcription by directing structural shifts in Mediator. Nat Struct Mol Biol 17:753–760

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Michalovitz D, Halevy O, Oren M (1990) Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62:671–680

    CAS  PubMed  Google Scholar 

  106. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    CAS  PubMed  Google Scholar 

  107. Mizuno H, Spike BT, Wahl GM, Levine AJ (2010) Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc Natl Acad Sci U S A 107:22745–22750

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Moll UM, Zaika A (2001) Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett 493:65–69

    CAS  PubMed  Google Scholar 

  109. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, Cromer A, Brugge JS, Sansom OJ, Norman JC, Vousden KH (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341

    PubMed  Google Scholar 

  110. Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8

    CAS  PubMed  Google Scholar 

  111. Murphy KL, Dennis AP, Rosen JM (2000) A gain of function p53 mutant promotes both genomic instability and cell survival in a novel p53-null mammary epithelial cell model. FASEB J 14:2291–2302

    CAS  PubMed  Google Scholar 

  112. Murphy KL, Rosen JM (2000) Mutant p53 and genomic instability in a transgenic mouse model of breast cancer. Oncogene 19:1045–1051

    CAS  PubMed  Google Scholar 

  113. Murphy M, Hinman A, Levine AJ (1996) Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev 10:2971–2980

    CAS  PubMed  Google Scholar 

  114. Nagaich AK, Appella E, Harrington RE (1997) DNA bending is essential for the site-specific recognition of DNA response elements by the DNA binding domain of the tumor suppressor protein p53. J Biol Chem 272:14842–14849

    CAS  PubMed  Google Scholar 

  115. Neilsen PM, Noll JE, Suetani RJ, Schulz RB, Al-Ejeh F, Evdokiou A, Lane DP, Callen DF (2011) Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget 2:1203–1217

    PubMed  PubMed Central  Google Scholar 

  116. Nikulenkov F, Spinnler C, Li H, Tonelli C, Shi Y, Turunen M, Kivioja T, Ignatiev I, Kel A, Taipale J, Selivanova G (2012) Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. Cell Death Differ 19:1992–2002

    CAS  PubMed  PubMed Central  Google Scholar 

  117. O’Rourke RW, Miller CW, Kato GJ, Simon KJ, Chen DL, Dang CV, Koeffler HP (1990) A potential transcriptional activation element in the p53 protein. Oncogene 5:1829–1832

    PubMed  Google Scholar 

  118. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959

    CAS  PubMed  Google Scholar 

  119. Ohiro Y, Usheva A, Kobayashi S, Duffy SL, Nantz R, Gius D, Horikoshi N (2003) Inhibition of stress-inducible kinase pathways by tumorigenic mutant p53. Mol Cell Biol 23:322–334

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Okorokov AL, Sherman MB, Plisson C, Grinkevich V, Sigmundsson K, Selivanova G, Milner J, Orlova EV (2006) The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. EMBO J 25:5191–5200

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860

    CAS  PubMed  Google Scholar 

  122. Oren M, Rotter V (2010) Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2:a001107

    PubMed  PubMed Central  Google Scholar 

  123. Osada M, Park HL, Nagakawa Y, Yamashita K, Fomenkov A, Kim MS, Wu G, Nomoto S, Trink B, Sidransky D (2005) Differential recognition of response elements determines target gene specificity for p53 and p63. Mol Cell Biol 25:6077–6089

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Parada LF, Land H, Weinberg RA, Wolf D, Rotter V (1984) Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312:649–651

    CAS  PubMed  Google Scholar 

  125. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165

    CAS  PubMed  Google Scholar 

  126. Pietenpol JA, Tokino T, Thiagalingam S, el-Deiry WS, Kinzler KW, Vogelstein B (1994) Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci U S A 91:1998–2002

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Quaas M, Muller GA, Engeland K (2012) p53 can repress transcription of cell cycle genes through a p21(WAF1/CIP1)-dependent switch from MMB to DREAM protein complex binding at CHR promoter elements. Cell Cycle 11:4661–4672

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Quante T, Otto B, Brazdova M, Kejnovska I, Deppert W, Tolstonog GV (2012) Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle 11:3290–3303

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Raycroft L, Wu HY, Lozano G (1990) Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049–1051

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Reinhardt HC, Schumacher B (2012) The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 28:128–136

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Restle A, Farber M, Baumann C, Bohringer M, Scheidtmann KH, Muller-Tidow C, Wiesmuller L (2008) Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants. Nucleic Acids Res 36:5362–5375

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev 9:402–412

    CAS  Google Scholar 

  133. Rotter V, Boss MA, Baltimore D (1981) Increased concentration of an apparently identical cellular protein in cells transformed by either Abelson murine leukemia virus or other transforming agents. J Virol 38:336–346

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ryan KM (2011) p53 and autophagy in cancer: guardian of the genome meets guardian of the proteome. Eur J Cancer 47:44–50

    CAS  PubMed  Google Scholar 

  135. Sahin E, DePinho RA (2012) Axis of ageing: telomeres, p53 and mitochondria. Nat Rev 13:397–404

    CAS  Google Scholar 

  136. Samowitz WS, Curtin K, Ma KN, Edwards S, Schaffer D, Leppert MF, Slattery ML (2002) Prognostic significance of p53 mutations in colon cancer at the population level. Int J Cancer 99:597–602

    CAS  PubMed  Google Scholar 

  137. Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH, Wang Q, Zambetti GP, Schuetz JD (2001) Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem 276:39359–39367

    CAS  PubMed  Google Scholar 

  138. Santhanam U, Ray A, Sehgal PB (1991) Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. Proc Natl Acad Sci U S A 88:7605–7609

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Sarig R, Rivlin N, Brosh R, Bornstein C, Kamer I, Ezra O, Molchadsky A, Goldfinger N, Brenner O, Rotter V (2010) Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med 207:2127–2140

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Schilling T, Kairat A, Melino G, Krammer PH, Stremmel W, Oren M, Muller M (2010) Interference with the p53 family network contributes to the gain of oncogenic function of mutant p53 in hepatocellular carcinoma. Biochem Biophys Res Commun 394:817–823

    CAS  PubMed  Google Scholar 

  141. Scian MJ, Carchman EH, Mohanraj L, Stagliano KE, Anderson MA, Deb D, Crane BM, Kiyono T, Windle B, Deb SP, Deb S (2008) Wild-type p53 and p73 negatively regulate expression of proliferation related genes. Oncogene 27:2583–2593

    CAS  PubMed  Google Scholar 

  142. Scian MJ, Stagliano KE, Anderson MA, Hassan S, Bowman M, Miles MF, Deb SP, Deb S (2005) Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol 25:10097–10110

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Scian MJ, Stagliano KE, Deb D, Ellis MA, Carchman EH, Das A, Valerie K, Deb SP, Deb S (2004) Tumor-derived p53 mutants induce oncogenesis by transactivating growth-promoting genes. Oncogene 23:4430–4443

    CAS  PubMed  Google Scholar 

  144. Scian MJ, Stagliano KE, Ellis MA, Hassan S, Bowman M, Miles MF, Deb SP, Deb S (2004) Modulation of gene expression by tumor-derived p53 mutants. Cancer Res 64:7447–7454

    CAS  PubMed  Google Scholar 

  145. Seto E, Usheva A, Zambetti GP, Momand J, Horikoshi N, Weinmann R, Levine AJ, Shenk T (1992) Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc Natl Acad Sci U S A 89:12028–12032

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Shaked H, Shiff I, Kott-Gutkowski M, Siegfried Z, Haupt Y, Simon I (2008) Chromatin immunoprecipitation-on-chip reveals stress-dependent p53 occupancy in primary normal cells but not in established cell lines. Cancer Res 68:9671–9677

    CAS  PubMed  Google Scholar 

  147. Shi XB, Nesslinger NJ, Deitch AD, Gumerlock PH, deVere White RW (2002) Complex functions of mutant p53 alleles from human prostate cancer. Prostate 51:59–72

    CAS  PubMed  Google Scholar 

  148. Simmons DT, Chang C, Martin MA (1979) Multiple forms of polyoma virus tumor antigens from infected and transformed cells. J Virol 29:881–887

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Skaug V, Ryberg D, Kure EH, Arab MO, Stangeland L, Myking AO, Haugen A (2000) p53 mutations in defined structural and functional domains are related to poor clinical outcome in non-small cell lung cancer patients. Clin Cancer Res 6:1031–1037

    CAS  PubMed  Google Scholar 

  150. Solomon H, Madar S, Rotter V (2011) Mutant p53 gain of function is interwoven into the hallmarks of cancer. J Pathol 225:475–478

    CAS  PubMed  Google Scholar 

  151. Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A, Del Sal G, Levrero M, Sacchi A, Oren M, Blandino G (2002) Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 277:18817–18826

    CAS  PubMed  Google Scholar 

  152. Subler MA, Martin DW, Deb S (1994) Activation of the human immunodeficiency virus type 1 long terminal repeat by transforming mutants of human p53. J Virol 68:103–110

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Subler MA, Martin DW, Deb S (1992) Inhibition of viral and cellular promoters by human wild-type p53. J Virol 66:4757–4762

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593

    CAS  PubMed  Google Scholar 

  155. Taylor WR, Egan SE, Mowat M, Greenberg AH, Wright JA (1992) Evidence for synergistic interactions between ras, myc and a mutant form of p53 in cellular transformation and tumor dissemination. Oncogene 7:1383–1390

    CAS  PubMed  Google Scholar 

  156. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA, Van Pelt CS, Lozano G (2008) The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 22:1337–1344

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Torti D, Trusolino L (2011) Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med 3:623–636

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Vaughan CA, Frum R, Pearsall I, Singh S, Windle B, Yeudall A, Deb SP, Deb S (2012) Allele specific gain-of-function activity of p53 mutants in lung cancer cells. Biochem Biophys Res Commun 428:6–10

    CAS  PubMed  Google Scholar 

  159. Vaughan CA, Singh S, Windle B, Sankala HM, Graves PR, Andrew Yeudall W, Deb SP, Deb S (2011) p53 mutants induce transcription of NF-kappaB2 in H1299 cells through CBP and STAT binding on the NF-kappaB2 promoter and gain of function activity. Arch Biochem Biophys 518:79–88

    PubMed  PubMed Central  Google Scholar 

  160. Vaughan CA, Singh S, Windle B, Yeudall WA, Frum R, Grossman SR, Deb SP, Deb S (2012) Gain-of-Function activity of mutant p53 in lung cancer through Up-Regulation of receptor protein Tyrosine Kinase Axl. Genes Cancer 3:491–502

    PubMed  PubMed Central  Google Scholar 

  161. Vikhanskaya F, Lee MK, Mazzoletti M, Broggini M, Sabapathy K (2007) Cancer-derived p53 mutants suppress p53-target gene expression–potential mechanism for gain of function of mutant p53. Nucleic Acids Res 35:2093–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Vilborg A, Bersani C, Wilhelm MT, Wiman KG (2011) The p53 target Wig-1: a regulator of mRNA stability and stem cell fate? Cell Death Differ 18:1434–1440

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    CAS  PubMed  Google Scholar 

  164. Walerych D, Napoli M, Collavin L, Del Sal G (2012) The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 33:2007–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Walter K, Warnecke G, Bowater R, Deppert W, Kim E (2005) tumor suppressor p53 binds with high affinity to CTG.CAG trinucleotide repeats and induces topological alterations in mismatched duplexes. J Biol Chem 280:42497–42507

    CAS  PubMed  Google Scholar 

  166. Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan WK, Li KC, Hong TM, Yang PC (2009) p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11:694–704

    CAS  PubMed  Google Scholar 

  167. Wang XJ, Greenhalgh DA, Jiang A, He D, Zhong L, Brinkley BR, Roop DR (1998) Analysis of centrosome abnormalities and angiogenesis in epidermal-targeted p53172H mutant and p53-knockout mice after chemical carcinogenesis: evidence for a gain of function. Mol Carcinog 23:185–192

    CAS  PubMed  Google Scholar 

  168. Wang XJ, Greenhalgh DA, Jiang A, He D, Zhong L, Medina D, Brinkley BR, Roop DR (1998) Expression of a p53 mutant in the epidermis of transgenic mice accelerates chemical carcinogenesis. Oncogene 17:35–45

    PubMed  Google Scholar 

  169. Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y, Weng Z, Liu J, Zhao XD, Chew JL, Lee YL, Kuznetsov VA, Sung WK, Miller LD, Lim B, Liu ET, Yu Q, Ng HH, Ruan Y (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219

    CAS  PubMed  Google Scholar 

  170. Weinstein IB (2002) Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 297:63–64

    CAS  PubMed  Google Scholar 

  171. Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R, Kalis M, Levrero M, Strano S, Gorgoulis VG, Rotter V, Blandino G, Oren M (2007) Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 67:2396–2401

    CAS  PubMed  Google Scholar 

  172. Weisz L, Oren M, Rotter V (2007) Transcription regulation by mutant p53. Oncogene 26:2202–2211

    CAS  PubMed  Google Scholar 

  173. Weisz L, Zalcenstein A, Stambolsky P, Cohen Y, Goldfinger N, Oren M, Rotter V (2004) Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res 64:8318–8327

    CAS  PubMed  Google Scholar 

  174. Wolf D, Harris N, Rotter V (1984) Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell 38:119–126

    CAS  PubMed  Google Scholar 

  175. Wong RP, Tsang WP, Chau PY, Co NN, Tsang TY, Kwok TT (2007) p53-R273H gains new function in induction of drug resistance through down-regulation of procaspase-3. Mol Cancer Ther 6:1054–1061

    CAS  PubMed  Google Scholar 

  176. Yan W, Liu G, Scoumanne A, Chen X (2008) Suppression of inhibitor of differentiation 2, a target of mutant p53, is required for gain-of-function mutations. Cancer Res 68:6789–6796

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Yeudall WA, Vaughan CA, Miyazaki H, Ramamoorthy M, Choi MY, Chapman CG, Wang H, Black E, Bulysheva AA, Deb SP, Windle B, Deb S (2012) Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis 33:442–451

    CAS  PubMed  Google Scholar 

  178. Zalcenstein A, Stambolsky P, Weisz L, Muller M, Wallach D, Goncharov TM, Krammer PH, Rotter V, Oren M (2003) Mutant p53 gain of function: repression of CD95(Fas/APO-1) gene expression by tumor-associated p53 mutants. Oncogene 22:5667–5676

    CAS  PubMed  Google Scholar 

  179. Zalcenstein A, Weisz L, Stambolsky P, Bar J, Rotter V, Oren M (2006) Repression of the MSP/MST-1 gene contributes to the antiapoptotic gain of function of mutant p53. Oncogene 25:359–369

    CAS  PubMed  Google Scholar 

  180. Zauberman A, Barak Y, Ragimov N, Levy N, Oren M (1993) Sequence-specific DNA binding by p53: identification of target sites and lack of binding to p53–MDM2 complexes. EMBO J 12:2799–2808

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Zerdoumi Y, Aury-Landas J, Bonaiti-Pellie C, Derambure C, Sesboue R, Renaux-Petel M, Frebourg T, Bougeard G, Flaman JM (2013) Drastic effect of germline TP53 missense mutations in Li-Fraumeni patients. Hum Mutat 34:453–461

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumitra Deb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vaughan, C., Pearsall, I., Yeudall, A., Deb, S.P., Deb, S. (2014). p53: Its Mutations and Their Impact on Transcription. In: Deb, S., Deb, S. (eds) Mutant p53 and MDM2 in Cancer. Subcellular Biochemistry, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9211-0_4

Download citation

Publish with us

Policies and ethics