Skip to main content

Alterations of p63 and p73 in Human Cancers

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 85))

Abstract

p53 and its related genes, p63 and p73 constitute the p53 gene family. While p53 is the most frequently mutated gene in human tumors, p63 and p73 are rarely mutated or deleted in cancers. Many studies have reported p63/p73 overexpression in human cancers while others showed that a loss of p63/p73 is associated with tumor progression and metastasis. Thus, whether p63 or p73 is a tumor suppressor gene or an oncogene has been a matter of debate. This controversy has been attributed to the existence of multiple splicing isoforms with distinct functions; the full-length TA isoform of p63 has structural and functional similarity to wild-type p53, whereas the ΔNp63 acts primarily in dominant-negative fashion against all family members of p53. Differential activities of TA and ΔN isoforms have been shown in vivo by creating isform-specific gene knockout mice. All p53, p63, p73 proteins bind to and activate target genes with p53-response elements; p63 also binds to distinct p63-response elements and regulate expression of specific target genes involved in skin, limb, and craniofacial development. Interestingly, several studies have shown that both p63 and p73 are involved in cellular response to cancer therapy and others have indicated that both of these molecules are required for p53-induced apoptosis, suggesting functional interplay among p53 family proteins. Consistent with these findings, aberrant splicing that result in ΔNp63 or ΔNp73 overexpression are frequently found in human cancers, and is associated with poor clinical outcomes of patients in the latter. Thus immunohistochemical staining of tumor specimen with ΔNp73-specific antibody might have diagnostic values in cancer clinics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923, Review

    CAS  PubMed  Google Scholar 

  2. Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9:724–737, Review

    CAS  PubMed  Google Scholar 

  3. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431, Review

    CAS  PubMed  Google Scholar 

  4. Green DR, Chipuk JE (2006) p53 and metabolism: inside the TIGAR. Cell 126(1):30–32, Review

    CAS  PubMed  Google Scholar 

  5. Rufini A, Tucci P, Celardo I, Melino G (2013) Senescence and aging: the critical roles of p53. Oncogene 32(43):5129–5143, Review

    CAS  PubMed  Google Scholar 

  6. Xu Y (2008) Induction of genetic instability by gain-of-function p53 cancer mutants. Oncogene 27(25):3501–3507

    CAS  PubMed  Google Scholar 

  7. Lai D, Visser-Grieve S, Yang X (2012) Tumour suppressor genes in chemotherapeutic drug response. Biosci Rep 32(4):361–374

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Frezza C, Martins CP (2012) From tumor prevention to therapy: empowering p53 to fight back. Drug Resist Updat 15(5–6):258–267

    CAS  PubMed  Google Scholar 

  9. Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M, Nunan R, Pirollo KF, Rait A, Chang EH (2013) Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21(5):1096–1103

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90(4):809–819

    CAS  PubMed  Google Scholar 

  11. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V, Andrews NC, Caput D, McKeon F (1998) p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2(3):305–316

    CAS  PubMed  Google Scholar 

  12. Murray-Zmijewski F, Lane DP, Bourdon JC (2006) p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 13(6):962–972, Review

    CAS  PubMed  Google Scholar 

  13. Collavin L, Lunardi A, Del Sal G (2010) p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ 17(6):901–911

    CAS  PubMed  Google Scholar 

  14. Schultz J, Ponting CP, Hofmann K, Bork P (1997) SAM as a protein interaction domain involved in developmental regulation. Protein Sci 6(1):249–253

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Thanos CD, Bowie JU (1999) p53 Family members p63 and p73 are SAM domain-containing proteins. Protein Sci 8(8):1708–1710

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Serber Z, Lai HC, Yang A, Ou HD, Sigal MS, Kelly AE, Darimont BD, Duijf PH, Van Bokhoven H, McKeon F, Dötsch V (2002) A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism. Mol Cell Biol 22(24):8601–8611

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Moll UM, Slade N (2004) p63 and p73: roles in development and tumor formation. Mol Cancer Res 2(7):371–386, From tumor prevention to therapy: empowering p53 to fight back. Review

    Google Scholar 

  18. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, Saville MK, Lane DP (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19(18):2122–2137, Epub 2005 Aug 30. Review

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Courtois S, Caron de Fromentel C, Hainaut P (2004) p53 protein variants: structural and functional similarities with p63 and p73 isoforms. Oncogene 23(3):631–638, Review

    CAS  PubMed  Google Scholar 

  20. Chi SW, Ayed A, Arrowsmith CH (1999) Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain. EMBO J 18(16):4438–4445

    CAS  PubMed Central  PubMed  Google Scholar 

  21. De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A, Falco M, Annicchiarico-Petruzzelli M, Levrero M, Melino G (1998) Two new p73 splice variants, gamma and delta, with different transcriptional activity. J Exp Med 188(9):1763–1768

    PubMed Central  PubMed  Google Scholar 

  22. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398(6729):708–713

    CAS  PubMed  Google Scholar 

  23. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366):215–221

    CAS  PubMed  Google Scholar 

  24. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4(1):1–7

    CAS  PubMed  Google Scholar 

  25. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250(4985):1233–1238

    CAS  PubMed  Google Scholar 

  26. Malkin D (1993) p53 and the Li-Fraumeni syndrome. Cancer Genet Cytogenet 66(2):83–92, Review

    CAS  PubMed  Google Scholar 

  27. Strong LC, Williams WR, Tainsky MA (1992) The Li-Fraumeni syndrome: from clinical epidemiology to molecular genetics. Am J Epidemiol 135(2):190–199, Review

    CAS  PubMed  Google Scholar 

  28. Osada M, Park HL, Nagakawa Y, Yamashita K, Fomenkov A, Kim MS, Wu G, Nomoto S, Trink B, Sidransky D (2005) Differential recognition of response elements determines target gene specificity for p53 and p63. Mol Cell Biol 25(14):6077–6089

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA (2002) REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10(5):995–1005

    CAS  PubMed  Google Scholar 

  30. Sasaki Y, Ishida S, Morimoto I, Yamashita T, Kojima T, Kihara C, Tanaka T, Imai K, Nakamura Y, Tokino T (2002) The p53 family member genes are involved in the Notch signal pathway. J Biol Chem 277(1):719–724, Epub 2001 Oct 18

    CAS  PubMed  Google Scholar 

  31. Nakagawa T, Takahashi M, Ozaki T, Watanabe Ki K, Todo S, Mizuguchi H, Hayakawa T, Nakagawara A (2002) Autoinhibitory regulation of p73 by Delta Np73 to modulate cell survival and death through a p73-specific target element within the Delta Np73 promoter. Mol Cell Biol 22(8):2575–2585

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Buckley NE, Nic An Tsaoir CB, Blayney JK, Oram LC, Crawford NT, D’Costa ZC, Quinn JE, Kennedy RD, Harkin DP, Mullan PB (2013) BRCA1 is a key regulator of breast differentiation through activation of Notch signaling with implications for anti-endocrine treatment of breast cancers. Nucleic Acids Res 41(18):8601–8614

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Lin J, Chen J, Elenbaas B, Levine AJ (1994) Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55 kD protein. Genes Dev 8:1235–1246

    CAS  PubMed  Google Scholar 

  34. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    CAS  PubMed  Google Scholar 

  35. Deb SP (2003) Cell cycle regulatory functions of the human oncoprotein MDM2. Mol Cancer Res 1(14):1009–1016, Review

    CAS  PubMed  Google Scholar 

  36. Popowicz GM, Czarna A, Holak TA (2008) Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle 7:2441–2443

    CAS  PubMed  Google Scholar 

  37. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303

    CAS  PubMed  Google Scholar 

  38. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    CAS  PubMed  Google Scholar 

  39. Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R et al (2004) Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24:5835–5843

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL (2008) Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ 15:841–848

    CAS  PubMed  Google Scholar 

  41. Okamoto K, Taya Y, Nakagama H (2009) Mdmx enhances p53 ubiquitination by altering the substrate preference of the Mdm2 ubiquitin ligase. FEBS Lett 583:2710–2714

    CAS  PubMed  Google Scholar 

  42. Ongkeko WM, Wang XQ, Siu WY, Lau AW, Yamashita K, Harris AL, Cox LS, Poon RY (1999) MDM2 and MDMX bind and stabilize the p53-related protein p73. Curr Biol 9(15):829–832

    CAS  PubMed  Google Scholar 

  43. Zdzalik M, Pustelny K, Kedracka-Krok S, Huben K, Pecak A, Wladyka B, Jankowski S, Dubin A, Potempa J, Dubin G (2010) Interaction of regulators Mdm2 and Mdmx with transcription factors p53, p63 and p73. Cell Cycle 9(22):4584–4591

    CAS  PubMed  Google Scholar 

  44. Kojima T, Ikawa Y, Katoh I (2001) Analysis of molecular interactions of the p53-family p51(p63) gene products in a yeast two-hybrid system: homotypic and heterotypic interactions and association with p53-regulatory factors. Biochem Biophys Res Commun 281:1170–1175

    CAS  PubMed  Google Scholar 

  45. Little NA, Jochemsen AG (2001) Hdmx and Mdm2 can repress transcription activation by p53 but not by p63. Oncogene 20:4576–4580

    CAS  PubMed  Google Scholar 

  46. Wang X, Arooz T, Siu WY, Chiu CH, Lau A, Yamashita K et al (2001) MDM2 and MDMX can interact differently with ARF and members of the p53 family. FEBS Lett 490:202–208

    CAS  PubMed  Google Scholar 

  47. Calabro V, Mansueto G, Parisi T, Vivo M, Calogero RA, La Mantia G (2002) The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J Biol Chem 277:2674–2681

    CAS  PubMed  Google Scholar 

  48. Schon O, Friedler A, Bycroft M, Freund SM, Fersht AR (2002) Molecular mechanism of the interaction between MDM2 and p53. J Mol Biol 323:491–501

    CAS  PubMed  Google Scholar 

  49. Burge S, Teufel DP, Townsley FM, Freund SM, Bycroft M, Fersht AR (2009) Molecular basis of the interactions between the p73 N terminus and p300: effects on transactivation and modulation by phosphorylation. Proc Natl Acad Sci U S A 106:3142–3147

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Mavinahalli JN, Madhumalar A, Beuerman RW, Lane DP, Verma C (2010) Differences in the transactivation domains of p53 family members: a computational study. BMC Genomics 11(Suppl 1):S5. doi:10.1186/1471-2164-11-S1-S5

    PubMed Central  PubMed  Google Scholar 

  51. Keyes WM, Vogel H, Koster MI, Guo X, Qi Y, Petherbridge KM, Roop DR, Bradley A, Mills AA (2006) p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc Natl Acad Sci U S A 103(22):8435–8440

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, McKeon F, Caput D (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404(6773):99–103

    CAS  PubMed  Google Scholar 

  53. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416(6880):560–564

    CAS  PubMed  Google Scholar 

  54. Taneja P, Zhu S, Maglic D, Fry EA, Kendig RD, Inoue K (2011) Transgenic and knockout mice models to reveal the functions of tumor suppressor genes. Clin Med Insights Oncol 5:235–257. doi:10.4137/CMO.S7516, Epub 2011 Jul 28. Review

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Massion PP, Taflan PM, Jamshedur Rahman SM, Yildiz P, Shyr Y, Edgerton ME, Westfall MD, Roberts JR, Pietenpol JA, Carbone DP, Gonzalez AL (2003) Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res 63(21):7113–7121

    CAS  PubMed  Google Scholar 

  56. Flores ER (2007) The roles of p63 in cancer. Cell Cycle 6(3):300–304, Epub 2007 Feb 3. Review

    CAS  PubMed  Google Scholar 

  57. Su X, Paris M, Gi YJ, Tsai KY, Cho MS, Lin YL, Biernaskie JA, Sinha S, Prives C, Pevny LH, Miller FD, Flores ER (2009) TAp63 prevents premature aging by promoting adult stem cell maintenance. Cell Stem Cell 5(1):64–75

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Keyes WM, Pecoraro M, Aranda V, Vernersson-Lindahl E, Li W, Vogel H, Guo X, Garcia EL, Michurina TV, Enikolopov G, Muthuswamy SK, Mills AA (2011) ΔNp63α is an oncogene that targets chromatin remodeler Lsh to drive skin stem cell proliferation and tumorigenesis. Cell Stem Cell 8(2):164–176

    CAS  PubMed  Google Scholar 

  59. Guo X, Keyes WM, Papazoglu C, Zuber J, Li W, Lowe SW, Vogel H, Mills AA (2009) TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol 11(12):1451–1457

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Aberdam D, Gambaro K, Medawar A, Aberdam E, Rostagno P, de la Forest Divonne S, Rouleau M (2007) Embryonic stem cells as a cellular model for neuroectodermal commitment and skin formation. C R Biol 330(6–7):479–484. Epub 16 Apr 2007 Apr. Review

    Google Scholar 

  61. Medawar A, Virolle T, Rostagno P, de la Forest-Divonne S, Gambaro K, Rouleau M, Aberdam D (2008) DeltaNp63 is essential for epidermal commitment of embryonic stem cells. PLoS One 3(10):e3441

    PubMed Central  PubMed  Google Scholar 

  62. Shalom-Feuerstein R, Lena AM, Zhou H, De La Forest DS, Van Bokhoven H, Candi E, Melino G, Aberdam D (2011) ΔNp63 is an ectodermal gatekeeper of epidermal morphogenesis. Cell Death Differ 18(5):887–896

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC, Khan F, Itie-Youten A, Wakeham A, Tsao MS, Iovanna JL, Squire J, Jurisica I, Kaplan D, Melino G, Jurisicova A, Mak TW (2008) TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 22(19):2677–2691

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Wilhelm MT, Rufini A, Wetzel MK, Tsuchihara K, Inoue S, Tomasini R, Itie-Youten A, Wakeham A, Arsenian-Henriksson M, Melino G, Kaplan DR, Miller FD, Mak TW (2010) Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes Dev 24(6):549–560

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Zhu J, Jiang J, Zhou W, Chen X (1998) The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res 58(22):5061–5065

    CAS  PubMed  Google Scholar 

  66. Dohn M, Zhang S, Chen X (2001) p63alpha and DeltaNp63alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene 20(25):3193–3205

    CAS  PubMed  Google Scholar 

  67. Melino G, De Laurenzi V, Vousden KH (2002) p73: friend or foe in tumorigenesis. Nat Rev Cancer 2(8):605–615, Review

    CAS  PubMed  Google Scholar 

  68. Melino G (2011) p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ 18(9):1487–1499, Review

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Davison TS, Vagner C, Kaghad M, Ayed A, Caput D, Arrowsmith CH (1999) p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J Biol Chem 274(26):18709–18714

    CAS  PubMed  Google Scholar 

  70. Grob TJ, Novak U, Maisse C, Barcaroli D, Lüthi AU, Pirnia F, Hügli B, Graber HU, De Laurenzi V, Fey MF, Melino G, Tobler A (2001) Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8(12):1213–1223

    CAS  PubMed  Google Scholar 

  71. Stiewe T, Zimmermann S, Frilling A, Esche H, Pützer BM (2002) Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer Res 62(13):3598–3602

    CAS  PubMed  Google Scholar 

  72. Chan WM, Siu WY, Lau A, Poon RY (2004) How many mutant p53 molecules are needed to inactivate a tetramer? Mol Cell Biol 24(8):3536–3551

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Yoshikawa H, Nagashima M, Khan MA, McMenamin MG, Hagiwara K, Harris CC (1999) Mutational analysis of p73 and p53 in human cancer cell lines. Oncogene 18(22):3415–3421

    CAS  PubMed  Google Scholar 

  74. Ichimiya S, Nimura Y, Kageyama H, Takada N, Sunahara M, Shishikura T, Nakamura Y, Sakiyama S, Seki N, Ohira M, Kaneko Y, McKeon F, Caput D, Nakagawara A (1999) p73 at chromosome 1p36.3 is lost in advanced stage neuroblastoma but its mutation is infrequent. Oncogene 18(4):1061–1066

    CAS  PubMed  Google Scholar 

  75. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68(4):820–823

    PubMed Central  PubMed  Google Scholar 

  76. Zaika AI, El-Rifai W (2006) The role of p53 protein family in gastrointestinal malignancies. Cell Death Differ 13(6):935–940, Review

    CAS  PubMed  Google Scholar 

  77. Park BJ, Lee SJ, Kim JI, Lee CH, Chang SG, Park JH et al (2000) Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res 60:3370–3374

    CAS  PubMed  Google Scholar 

  78. Grisanzio C, Signoretti S (2008) p63 in prostate biology and pathology. J Cell Biochem 103:1354–1368

    CAS  PubMed  Google Scholar 

  79. Tucci P, Agostini M, Grespi F, Markert EK, Terrinoni A, Vousden KH et al (2012) Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc Natl Acad Sci U S A 109:15312–15317

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Koga F, Kawakami S, Fujii Y, Saito K, Ohtsuka Y, Iwai A, Ando N, Takizawa T, Kageyama Y, Kihara K (2003) Impaired p63 expression associates with poor prognosis and uroplakin III expression in invasive urothelial carcinoma of the bladder. Clin Cancer Res 9(15):5501–5507

    CAS  PubMed  Google Scholar 

  81. Sniezek JC, Matheny KE, Burkey BB, Netterville JL, Pietenpol JA (2002) Expression of p63 and 14-3-3sigma in normal and hyperdifferentiated mucosa of the upper aerodigestive tract. Otolaryngol Head Neck Surg 126(6):598–601

    PubMed  Google Scholar 

  82. Sniezek JC, Matheny KE, Westfall MD, Pietenpol JA (2004) Dominant negative p63 isoform expression in head and neck squamous cell carcinoma. Laryngoscope 114(12):2063–2072

    CAS  PubMed  Google Scholar 

  83. Ebrahimi M, Wahlin YB, Coates PJ, Sjöström B, Nylander K (2006) Decreased expression of p63 in oral lichen planus and graft-vs.-host disease associated with oral inflammation. J Oral Pathol Med 35(1):46–50

    CAS  PubMed  Google Scholar 

  84. Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE, Ratovitski EA, Jen J, Sidransky D (2000) AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci U S A 97(10):5462–5467

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Di Como CJ, Urist MJ, Babayan I, Drobnjak M, Hedvat CV, Teruya-Feldstein J, Pohar K, Hoos A, Cordon-Cardo C (2002) p63 expression profiles in human normal and tumor tissues. Clin Cancer Res 8(2):494–501

    PubMed  Google Scholar 

  86. Brunelli M, Bria E, Nottegar A, Cingarlini S, Simionato F, Caliò A, Eccher A, Parolini C, Iannucci A, Gilioli E, Pedron S, Massari F, Tortora G, Borze I, Knuutila S, Gobbo S, Santo A, Tondulli L, Calabrò F, Martignoni G, Chilosi M (2012) True 3q chromosomal amplification in squamous cell lung carcinoma by FISH and aCGH molecular analysis: impact on targeted drugs. PLoS One 7(12):e49689

    CAS  PubMed Central  PubMed  Google Scholar 

  87. DeYoung MP, Johannessen CM, Leong CO, Faquin W, Rocco JW, Ellisen LW (2006) Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res 66(19):9362–9368

    CAS  PubMed  Google Scholar 

  88. King KE, Weinberg WC (2007) p63: defining roles in morphogenesis, homeostasis, and neoplasia of the epidermis. Mol Carcinog 46(8):716–724

    CAS  PubMed  Google Scholar 

  89. Tonon G, Wong KK, Maulik G, Brennan C, Feng B, Zhang Y, Khatry DB, Protopopov A, You MJ, Aguirre AJ, Martin ES, Yang Z, Ji H, Chin L, Depinho RA (2005) High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci U S A 102(27):9625–9630

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Tonon G, Brennan C, Protopopov A, Maulik G, Feng B, Zhang Y, Khatry DB, You MJ, Aguirre AJ, Martin ES, Yang Z, Ji H, Chin L, Wong KK, Depinho RA (2005) Common and contrasting genomic profiles among the major human lung cancer subtypes. Cold Spring Harb Symp Quant Biol 70:11–24

    CAS  PubMed  Google Scholar 

  91. Redon R, Muller D, Caulee K, Wanherdrick K, Abecassis J, du Manoir S (2001) A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not p63 gene as a likely target of 3q26-qter gains. Cancer Res 61(10):4122–4129

    CAS  PubMed  Google Scholar 

  92. Wang TY, Chen BF, Yang YC, Chen H, Wang Y, Cviko A, Quade BJ, Sun D, Yang A, McKeon FD, Crum CP (2001) Histologic and immunophenotypic classification of cervical carcinomas by expression of the p53 homologue p63: a study of 250 cases. Hum Pathol 32(5):479–486

    CAS  PubMed  Google Scholar 

  93. Hu H, Xia SH, Li AD, Xu X, Cai Y, Han YL, Wei F, Chen BS, Huang XP, Han YS, Zhang JW, Zhang X, Wu M, Wang MR (2002) Elevated expression of p63 protein in human esophageal squamous cell carcinomas. Int J Cancer 102(6):580–583

    CAS  PubMed  Google Scholar 

  94. Weber A, Bellmann U, Bootz F, Wittekind C, Tannapfel A (2002) Expression of p53 and its homologues in primary and recurrent squamous cell carcinomas of the head and neck. Int J Cancer 99(1):22–28

    CAS  PubMed  Google Scholar 

  95. Nylander K, Vojtesek B, Nenutil R, Lindgren B, Roos G, Zhanxiang W, Sjöström B, Dahlqvist A, Coates PJ (2002) Differential expression of p63 isoforms in normal tissues and neoplastic cells. J Pathol 198(4):417–427

    CAS  PubMed  Google Scholar 

  96. Wang X, Mori I, Tang W, Nakamura M, Nakamura Y, Sato M, Sakurai T, Kakudo K (2002) p63 expression in normal, hyperplastic and malignant breast tissues. Breast Cancer 9(3):216–219

    PubMed  Google Scholar 

  97. Reis-Filho JS, Milanezi F, Amendoeira I, Albergaria A, Schmitt FC (2003) Distribution of p63, a novel myoepithelial marker, in fine-needle aspiration biopsies of the breast: an analysis of 82 samples. Cancer 99(3):172–179

    CAS  PubMed  Google Scholar 

  98. Koker MM, Kleer CG (2004) p63 expression in breast cancer: a highly sensitive and specific marker of metaplastic carcinoma. Am J Surg Pathol 28(11):1506–1512

    PubMed  Google Scholar 

  99. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19(2):264–271

    CAS  PubMed  Google Scholar 

  100. Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW (2006) p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9(1):45–56

    CAS  PubMed  Google Scholar 

  101. Zangen R, Ratovitski E, Sidransky D (2005) DeltaNp63alpha levels correlate with clinical tumor response to cisplatin. Cell Cycle 4(10):1313–1315, Epub 2005 Oct 1

    CAS  PubMed  Google Scholar 

  102. Danilov AV, Neupane D, Nagaraja AS, Feofanova EV, Humphries LA, DiRenzo J, Korc M (2011) DeltaNp63alpha-mediated induction of epidermal growth factor receptor promotes pancreatic cancer cell growth and chemoresistance. PLoS One 6(10):e26815

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW (2007) The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 117(5):1370–1380

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Iwata T, Uramoto H, Sugio K, Fujino Y, Oyama T, Nakata S, Ono K, Morita M, Yasumoto K (2005) A lack of prognostic significance regarding DeltaNp63 immunoreactivity in lung cancer. Lung Cancer 50(1):67–73

    PubMed  Google Scholar 

  105. Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Nozoe T, Yasumoto K (2006) Expression of the p53 family in lung cancer. Anticancer Res 26(3A):1785–1790

    CAS  PubMed  Google Scholar 

  106. Barbieri CE, Tang LJ, Brown KA, Pietenpol JA (2006) Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res 66(15):7589–7597

    CAS  PubMed  Google Scholar 

  107. Helton ES, Zhu J, Chen X (2006) The unique NH2-terminally deleted (DeltaN) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the DeltaN variant of p63. J Biol Chem 281(5):2533–2542

    CAS  PubMed  Google Scholar 

  108. Celardo I, Grespi F, Antonov A, Bernassola F, Garabadgiu AV, Melino G, Amelio I (2013) Caspase-1 is a novel target of p63 in tumor suppression. Cell Death Dis 4:e645

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Han S, Semba S, Abe T, Makino N, Furukawa T, Fukushige S, Takahashi H, Sakurada A, Sato M, Shiiba K, Matsuno S, Nimura Y, Nakagawara A, Horii A (1999) Infrequent somatic mutations of the p73 gene in various human cancers. Eur J Surg Oncol 25(2):194–198

    CAS  PubMed  Google Scholar 

  110. Nomoto S, Haruki N, Kondo M, Konishi H, Takahashi T, Takahashi T, Takahashi T (1998) Search for mutations and examination of allelic expression imbalance of the p73 gene at 1p36.33 in human lung cancers. Cancer Res 58(7):1380–1383

    CAS  PubMed  Google Scholar 

  111. Concin N, Becker K, Slade N, Erster S, Mueller-Holzner E, Ulmer H, Daxenbichler G, Zeimet A, Zeillinger R, Marth C, Moll UM (2004) Transdominant DeltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo. Cancer Res 64(7):2449–2460

    CAS  PubMed  Google Scholar 

  112. Domínguez G, García JM, Peña C, Silva J, García V, Martínez L, Maximiano C, Gómez ME, Rivera JA, García-Andrade C, Bonilla F (2006) DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. J Clin Oncol 24(5):805–815, Epub 2005 Dec 27

    PubMed  Google Scholar 

  113. Faridoni-Laurens L, Tourpin S, Alsafadi S, Barrois M, Temam S, Janot F, Koscielny S, Bosq J, Bénard J, Ahomadegbe JC (2008) Involvement of N-terminally truncated variants of p73, deltaTAp73, in head and neck squamous cell cancer: a comparison with p53 mutations. Cell Cycle 7(11):1587–1596

    CAS  PubMed  Google Scholar 

  114. Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Morita M, Funa K, Yasumoto K (2004) Expression of deltaNp73 predicts poor prognosis in lung cancer. Clin Cancer Res 10(20):6905–6911

    CAS  PubMed  Google Scholar 

  115. Wager M, Guilhot J, Blanc JL, Ferrand S, Milin S, Bataille B, Lapierre F, Denis S, Chantereau T, Larsen CJ, Karayan-Tapon L (2006) Prognostic value of increase in transcript levels of Tp73 DeltaEx2-3 isoforms in low-grade glioma patients. Br J Cancer 95(8):1062–1069

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Castillo J, Goñi S, Latasa MU, Perugorría MJ, Calvo A, Muntané J, Bioulac-Sage P, Balabaud C, Prieto J, Avila MA, Berasain C (2009) Amphiregulin induces the alternative splicing of p73 into its oncogenic isoform DeltaEx2p73 in human hepatocellular tumors. Gastroenterology 137(5):1805–15.e1-4

    CAS  PubMed  Google Scholar 

  117. Corn PG, Kuerbitz SJ, van Noesel MM, Esteller M, Compitello N, Baylin SB, Herman JG (1999) Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Res 59(14):3352–3356

    CAS  PubMed  Google Scholar 

  118. Kawano S, Miller CW, Gombart AF, Bartram CR, Matsuo Y, Asou H, Sakashita A, Said J, Tatsumi E, Koeffler HP (1999) Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 94(3):1113–1120

    CAS  PubMed  Google Scholar 

  119. Ibrahim N, He L, Leong CO, Xing D, Karlan BY, Swisher EM, Rueda BR, Orsulic S, Ellisen LW (2010) BRCA1-associated epigenetic regulation of p73 mediates an effector pathway for chemosensitivity in ovarian carcinoma. Cancer Res 70(18):7155–7165

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Alexandrova EM, Moll UM (2012) Role of p53 family members’ p73 and p63 in human hematological malignancies. Leuk Lymphoma 53(11):2116–2129

    CAS  PubMed  Google Scholar 

  121. Daskalos A, Logotheti S, Markopoulou S, Xinarianos G, Gosney JR, Kastania AN, Zoumpourlis V, Field JK, Liloglou T (2011) Global DNA hypomethylation-induced ΔNp73 transcriptional activation in non-small cell lung cancer. Cancer Lett 300(1):79–86

    CAS  PubMed  Google Scholar 

  122. Guan M, Chen Y (2005) Aberrant expression of DeltaNp73 in benign and malignant tumours of the prostate: correlation with Gleason score. J Clin Pathol 58(11):1175–1179

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Díaz R, González-Sancho JM, Soldevilla B, Silva J, García JM, García V, Peña C, Herrera M, Gómez I, Bonilla F, Domínguez G (2010) Differential regulation of TP73 isoforms by 1α,25-dihydroxyvitamin D3 and survivin in human colon and breast carcinomas. Genes Chromosomes Cancer 49(12):1135–1142

    PubMed  Google Scholar 

  124. Quon KC, Berns A (2001) Haplo-insufficiency? Let me count the ways. Genes Dev 15(22):2917–2921, Review

    CAS  PubMed  Google Scholar 

  125. Berger AH, Pandolfi PP (2011) Haplo-insufficiency: a driving force in cancer. J Pathol 223(2):137–146. doi:10.1002/path.2800, Epub 2010 Oct 29. Review

    CAS  PubMed  Google Scholar 

  126. Inoue K, Zindy F, Randle DH, Rehg JE, Sherr CJ (2001) Dmp1 is haplo-insufficient for tumor suppression and modifies the frequencies of Arf and p53 mutations in Myc-induced lymphomas. Genes Dev 15(22):2934–2939

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Inoue K, Mallakin A, Frazier DP (2007) Dmp1 and tumor suppression. Oncogene 26(30):4329–4335, Epub 2007 Jan 22. Review

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Mallakin A, Sugiyama T, Taneja P, Matise LA, Frazier DP, Choudhary M, Hawkins GA, D’Agostino RB Jr, Willingham MC, Inoue K (2007) Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell 12(4):381–394

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Sugiyama T, Frazier DP, Taneja P, Kendig RD, Morgan RL, Matise LA, Lagedrost SJ, Inoue K (2008) Signal transduction involving the dmp1 transcription factor and its alteration in human cancer. Clin Med Oncol 2:209–219, Epub 2008 Apr 1

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Taneja P, Maglic D, Kai F, Sugiyama T, Kendig RD, Frazier DP, Willingham MC, Inoue K (2010) Critical roles of DMP1 in human epidermal growth factor receptor 2/neu-Arf-p53 signaling and breast cancer development. Cancer Res 70(22):9084–9094

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Zhu S, Mott RT, Fry EA, Taneja P, Kulik G, Sui G, Inoue K (2013) Cooperation between Dmp1 loss and cyclin D1 overexpression in breast cancer. Am J Pathol 183(4):1339–1350

    CAS  PubMed  Google Scholar 

  132. Fry EA, Taneja P, Maglic D, Zhu S, Sui G, Inoue K (2013) Dmp1α inhibits HER2/neu-induced mammary tumorigenesis. PLoS One 8(10):e77870. doi:10.1371/journal.pone.0077870

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

K. Inoue has been supported by NIH/NCI 2R01CA106314, ACS RSG-07-207-01-MGO, and KG080179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazushi Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Inoue, K., Fry, E.A. (2014). Alterations of p63 and p73 in Human Cancers. In: Deb, S., Deb, S. (eds) Mutant p53 and MDM2 in Cancer. Subcellular Biochemistry, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9211-0_2

Download citation

Publish with us

Policies and ethics