Skip to main content

Lung Cancer Stem Cells, p53 Mutations and MDM2

  • Chapter
  • First Online:
Mutant p53 and MDM2 in Cancer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 85))

Abstract

Over the past few decades, advances in cancer research have enabled us to understand the different mechanisms that contribute to the aberrant proliferation of normal cells into abnormal cells that result in tumors. In the pursuit to find cures, researchers have primarily focused on various molecular level changes that are unique to cancerous cells. In humans, about 50 % or more cancers have a mutated tumor suppressor p53 gene thereby resulting in accumulation of p53 protein and losing its function to activate the target genes that regulate cell cycle and apoptosis. Extensive research conducted in murine cancer models with activated p53, loss of p53, or p53 missense mutations have facilitated researchers to understand the role of this key protein. Despite the identification of numerous triggers that causes lung cancer specific cure still remain elusive. One of the primary reasons attributed to this is due to the fact that the tumor tissue is heterogeneous and contains numerous sub-populations of cells. Studies have shown that a specific sub-population of cells termed as cancer stem cells (CSCs) drive the recurrence of cancer in response to standard chemotherapy. These CSCs are mutated cells with core properties similar to those of adult stem cells. They reside in a microenvironment within the tumor tissue that supports their growth and make them less susceptible to drug treatment. These cells possess properties of symmetric self-renewal and migration thus driving tumor formation and metastasis. Therefore, research specifically targeting these cells has gained prominence towards developing new therapeutic agents against cancer. This chapter focuses on lung cancer stem cells, p53 mutations noted in these cells, and importance of MDM2 interactions. Further, research approaches for better understanding of molecular mechanisms that drive CSC function and developing appropriate therapies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. International Agency for Research on Cancer, Lyon. Available from: http://globocan.iarc.fr. Accessed 7 Aug 2014.

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90.

    Google Scholar 

  3. Travis WD (2004) Pathology and genetics of tumours of the lung, pleura, thymus, and heart. IARC Press, Lyon, 344 p

    Google Scholar 

  4. Travis WD (2002) Pathology of lung cancer. Clin Chest Med 23:65–81, viii

    Article  PubMed  Google Scholar 

  5. Travis WD (2011) Pathology of lung cancer. Clin Chest Med 32:669–692

    Article  PubMed  Google Scholar 

  6. Travis WD, Travis LB, Devesa SS (1995) Lung cancer. Cancer 75:191–202

    Article  CAS  PubMed  Google Scholar 

  7. NCI (2014) PDQ® Non-small cell lung cancer treatment. National Cancer Institute, Bethesda

    Google Scholar 

  8. Kenfield SA, Wei EK, Stampfer MJ, Rosner BA, Colditz GA (2008) Comparison of aspects of smoking among the four histological types of lung cancer. Tob Control 17:198–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Subramanian J, Govindan R (2007) Lung cancer in never smokers: a review. J Clin Oncol 25:561–570

    Article  PubMed  Google Scholar 

  10. Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91:1194–1210

    Article  CAS  PubMed  Google Scholar 

  11. Toyooka S, Tsuda T, Gazdar AF (2003) The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat 21:229–239

    Article  CAS  PubMed  Google Scholar 

  12. Ezzati M, Henley SJ, Lopez AD, Thun MJ (2005) Role of smoking in global and regional cancer epidemiology: current patterns and data needs. Int J Cancer 116:963–971

    Article  CAS  PubMed  Google Scholar 

  13. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  CAS  PubMed  Google Scholar 

  14. Singh S, Trevino J, Bora-Singhal N, Coppola D, Haura E et al (2012) EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer 11:73

    Article  PubMed Central  PubMed  Google Scholar 

  15. Alamgeer M, Peacock CD, Matsui W, Ganju V, Watkins DN (2013) Cancer stem cells in lung cancer: evidence and controversies. Respirology 18:757–764

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hegab AE, Kubo H, Fujino N, Suzuki T, He M et al (2010) Isolation and characterization of murine multipotent lung stem cells. Stem Cells Dev 19:523–536

    Article  CAS  PubMed  Google Scholar 

  17. Kajstura J, Rota M, Hall SR, Hosoda T, D’Amario D et al (2011) Evidence for human lung stem cells. N Engl J Med 364:1795–1806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Otto WR (2002) Lung epithelial stem cells. J Pathol 197:527–535

    Article  CAS  PubMed  Google Scholar 

  19. Summer R, Fitzsimmons K, Dwyer D, Murphy J, Fine A (2007) Isolation of an adult mouse lung mesenchymal progenitor cell population. Am J Respir Cell Mol Biol 37:152–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Holmes C, Stanford WL (2007) Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 25:1339–1347

    Article  CAS  PubMed  Google Scholar 

  21. McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S et al (2009) Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells 27:623–633

    Article  CAS  PubMed  Google Scholar 

  22. Raiser DM, Kim CF (2009) Commentary: Sca-1 and Cells of the Lung: a matter of different sorts. Stem Cells 27:606–611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24:671–681

    Article  CAS  PubMed  Google Scholar 

  24. Giangreco A, Reynolds SD, Stripp BR (2002) Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161:173–182

    Article  PubMed Central  PubMed  Google Scholar 

  25. Teisanu RM, Lagasse E, Whitesides JF, Stripp BR (2009) Prospective isolation of bronchiolar stem cells based upon immunophenotypic and autofluorescence characteristics. Stem Cells 27:612–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gadepalli VS, Vaughan C, Rao RR (2013) Isolation and characterization of murine multipotent lung stem cells. Methods Mol Biol 962:183–191

    Article  CAS  PubMed  Google Scholar 

  27. Stripp BR, BHaVT (2011) Lung stem cells: looking beyond the hype. Nat Med 17:788–789

    Article  Google Scholar 

  28. Perona R, Lopez-Ayllon BD, de Castro Carpeno J, Belda-Iniesta C (2011) A role for cancer stem cells in drug resistance and metastasis in non-small-cell lung cancer. Clin Transl Oncol 13:289–293

    Article  CAS  PubMed  Google Scholar 

  29. Berns A (2005) Stem cells for lung cancer? Cell 121:811–813

    Article  CAS  PubMed  Google Scholar 

  30. Kratz JR, Yagui-Beltran A, Jablons DM (2010) Cancer stem cells in lung tumorigenesis. Ann Thorac Surg 89:S2090–S2095

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hassan KA, Wang L, Korkaya H, Chen G, Maillard I et al (2013) Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res 19:1972–1980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. He B, Barg RN, You L, Xu Z, Reguart N et al (2005) Wnt signaling in stem cells and non-small-cell lung cancer. Clin Lung Cancer 7:54–60

    Article  CAS  PubMed  Google Scholar 

  33. Zhang S, Wang Y, Mao JH, Hsieh D, Kim IJ et al (2012) Inhibition of CK2alpha down-regulates Hedgehog/Gli signaling leading to a reduction of a stem-like side population in human lung cancer cells. PLoS One 7:e38996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zhang S, Long H, Yang YL, Wang Y, Hsieh D et al (2013) Inhibition of CK2alpha down-regulates Notch1 signalling in lung cancer cells. J Cell Mol Med 17(7):854–862. http://www.ncbi.nlm.nih.gov/pubmed/23651443.

  35. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14:329–340

    Article  CAS  PubMed  Google Scholar 

  36. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH et al (2006) Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  CAS  PubMed  Google Scholar 

  37. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Xiao D, He J (2010) Epithelial mesenchymal transition and lung cancer. J Thorac Dis 2:154–159

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1:1001–1008

    CAS  PubMed  Google Scholar 

  40. Bonizzi G, Cicalese A, Insinga A, Pelicci PG (2012) The emerging role of p53 in stem cells. Trends Mol Med 18:6–12

    Article  CAS  PubMed  Google Scholar 

  41. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB et al (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Marion RM, Strati K, Li H, Murga M, Blanco R et al (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149–1153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Li H, Collado M, Villasante A, Strati K, Ortega S et al (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S et al (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138:1083–1095

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Elf SE, Miyata Y, Sashida G, Huang G et al (2009) p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4:37–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Zhao Z, Zuber J, Diaz-Flores E, Lintault L, Kogan SC et al (2010) p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev 24:1389–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Insinga A, Cicalese A, Faretta M, Gallo B, Albano L et al (2013) DNA damage in stem cells activates p21, inhibits p53, and induces symmetric self-renewing divisions. Proc Natl Acad Sci U S A 110:3931–3936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J et al (2012) The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell 21:25–35

    Article  CAS  PubMed  Google Scholar 

  49. Govindan R, Weber J (2014) TP53 mutations and lung cancer not all mutations are created equal. Clinical Cancer Res 2014 Jun 10. pii: clincanres.0899.2014. http://www.ncbi.nlm.nih.gov/pubmed/24916693 (Epub ahead of print)

  50. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND et al (2012) Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150:1121–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA et al (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860

    Article  CAS  PubMed  Google Scholar 

  52. Vaughan C, Deb SP, Deb S (2013) Generation of p53 knock-down cell lines. Methods Mol Biol 962:193–199

    Article  CAS  PubMed  Google Scholar 

  53. Vaughan CA, Singh S, Windle B, Yeudall WA, Frum R et al (2012) Gain-of-function activity of mutant p53 in lung cancer through up-regulation of receptor protein tyrosine kinase Axl. Genes Cancer 3:491–502

    Article  PubMed Central  PubMed  Google Scholar 

  54. Vaughan CA, Frum R, Pearsall I, Singh S, Windle B et al (2012) Allele specific gain-of-function activity of p53 mutants in lung cancer cells. Biochem Biophys Res Commun 428:6–10

    Article  CAS  PubMed  Google Scholar 

  55. Scian MJ, Stagliano KE, Anderson MA, Hassan S, Bowman M et al (2005) Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol 25:10097–10110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj R. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gadepalli, V.S., Deb, S.P., Deb, S., Rao, R.R. (2014). Lung Cancer Stem Cells, p53 Mutations and MDM2. In: Deb, S., Deb, S. (eds) Mutant p53 and MDM2 in Cancer. Subcellular Biochemistry, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9211-0_19

Download citation

Publish with us

Policies and ethics