Skip to main content

Research on the DelFly Aerodynamics

  • Chapter
  • First Online:
The DelFly

Abstract

In this chapter, an overview of the experimental studies focusing on the aerodynamics of the DelFly is given. Force generation mechanisms of the DelFly flapping-wing flight are addressed with particular consideration of the effects of different parameters such as wing geometry and flexibility. Furthermore, state-of-art flow visualization results are presented to give insight into the behavior of flow structures around and in the wake of the flapping wings and to assess their influence on the unsteady forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.J. Adrian, K.T. Christensen, Z.C. Liu, Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29(3), 275–290 (2000)

    Article  Google Scholar 

  2. R.J. Bomphrey, P. Henningsson, D. Michaelis, D. Hollis, Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation. J. R. Soc. Interface/R. Soc. 9(77), 86–3378 (2012)

    Google Scholar 

  3. R.J. Bomphrey, N.J. Lawson, G.K. Taylor, A.L.R. Thomas, Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth. Exp. Fluids 40(4), 546–554 (2006)

    Google Scholar 

  4. R.J. Bomphrey, G.K. Taylor, A.L.R. Thomas, Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair. Exp. Fluids 46(5):811–821 (April 2009)

    Google Scholar 

  5. B. Bruggeman, Improving flight performance of DelFly II in hover by improving wing design and driving mechanism. Master’s thesis, Faculty of Aerospace Engineering, TU Delft, The Netherlands (2010)

    Google Scholar 

  6. K.M.E. De Clercq, R. de Kat, B. Remes, B.W. van Oudheusden, H. Bijl, Aerodynamic experiments on DelFly II: unsteady lift enhancement. Int. J. Micro Air Veh. 1(4), 255–262 (2009)

    Google Scholar 

  7. J.H.S. de Baar, M. Percin, R.P. Dwight, B.W. Oudheusden, H. Bijl, Kriging regression of PIV data using a local error estimate. Exp. Fluids 55(1), 1650 (2014)

    Google Scholar 

  8. S. Deng, M. Percin, B. van Oudheusden, B. Remes, H. Bijl, Experimental investigation on the aerodynamics of a bio-inspired flexible flapping wing micro air vehicle. Int. J. Micro Air Veh. 6(2), 105–116 (2014)

    Google Scholar 

  9. S.K. Ghosh, C.L. Dora, D. Das, Unsteady wake characteristics of a flapping wing through 3D TR-PIV. J. Aerosp. Eng. 25, 547–558 (2012)

    Google Scholar 

  10. T. Gillebaart, Influence of flexibility on the clap and peel movement of the DelFly II. Master’s thesis, Delft University of Technology (2011)

    Google Scholar 

  11. M. Groen, PIV and force measurements on the flapping-wing MAV DelFly II. Master’s thesis, Delft University of Technology (2010)

    Google Scholar 

  12. M.A. Groen, B. Bruggeman, B.D.W. Remes, R. Ruijsink, B.W. van Oudheusden, H. Bijl, Improving flight performance of the flapping wing mav delfly ii, in International Micro Air Vehicle conference Braunschweig, Germany (2010)

    Google Scholar 

  13. A. Hedenstrom, L.C. Johansson, M. Wolf, R. von Busse, Y Winter, G.R. Spedding. Bat flight generates complex aerodynamic tracks. Science (New York, N.Y.) 316(5826):894–897 (May 2007)

    Google Scholar 

  14. H. Anders, M Rosén, G.R. Spedding, Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel. J. R. Soc. Interface/R. Soc. 3(7):263–76 (April 2006)

    Google Scholar 

  15. J. Jeong, F. Hussain, On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Fritz-Olaf, S.P. Sane, M.H. Dickinson, The aerodynamic effects of wing-wing interaction in flapping insect wings. J. Exp. Biol. 208(Pt 16):3075–3092 (August 2005)

    Google Scholar 

  17. F.T. Muijres, L.C. Johansson, M.S. Bowlin, Y. Winter, A. Hedenström. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds. PloS one 7(5) (January 2012)

    Google Scholar 

  18. F.T. Muijres, G.R. Spedding, Y. Winter, A. Hedenström, Actuator disk model and span efficiency of flapping flight in bats based on time-resolved PIV measurements. Exp. Fluids 51(2), 511–525 (2011)

    Google Scholar 

  19. M. Percin, H.E. Eisma, J.H.S. de Baar, B.W. van Oudheusden, B. Remes, R. Ruijsink, C. de Wagter, Wake reconstruction of flapping-wing MAV DelFly II in forward flight, in International Micro Air Vehicle Conference and Flight Competition (2012)

    Google Scholar 

  20. M. Percin, Y. Hu, B.W. Van Oudheusden, B. Remes, F. Scarano, Wing flexibility effects in clap-and-fling. Int. J. Micro Air Veh. 3(4), 217–228 (2011)

    Article  Google Scholar 

  21. M. Percin, B.W. van Oudheusden, H.E. Eisma, B.D.W. Remes, Three-dimensional vortex wake structure of a flapping-wing micro aerial vehicle in forward flight configuration. Exp. in Fluids 55(9):1806 (August 2014)

    Google Scholar 

  22. M. Percin, H. Eisma, B. Van Oudheusden, B. Remes, R. Ruijsink, C. De Wagter. Flow visualization in the wake of flapping-wing mav delfly iiin forward flight, in AIAA Fluid Dynamics and Co-located Conferences and Exhibit New Orleans (2012)

    Google Scholar 

  23. H. Ren, Y. Wu, P.G. Huang, Visualization and characterization of near-wake flow fields of a flapping-wing micro air vehicle using PIV. J. Visual. 16(1), 75–83 (2012)

    Article  Google Scholar 

  24. F. Scarano, Tomographic PIV: principles and practice. Measur. Sci. Technol. 24(1), 012001 (2013)

    Article  Google Scholar 

  25. G.R. Spedding, M. Rosén, Anders Hedenström, A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J. Exp. Biol. 206(14), 2313–2344 (2003)

    Article  Google Scholar 

  26. W.B. Tay, B.W. Van Oudheusden, H. Bijl, Numerical simulation of x-wing type biplane flapping wings in 3D using the immersed boundary method. Bioinspir. Biomimet. 9(3), 036001 (2014)

    Google Scholar 

  27. W.B. Tay, B.W. van Oudheusden, H. Bijl, Numerical simulation of a flapping four-wing micro-aerial vehicle. J. Fluids Struct. 55, 237–261 (2015)

    Article  Google Scholar 

  28. T. Weis-Fogh, Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59, 169–230 (1973)

    Google Scholar 

  29. M. Percin, B.W. van Oudheusden, Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates. Exp. in Fluids 56(2), 1–19 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. H. E. de Croon .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Bussiness Media Dordrecht

About this chapter

Cite this chapter

de Croon, G.C.H.E., Perçin, M., Remes , B.D.W., Ruijsink, R., De Wagter, C. (2016). Research on the DelFly Aerodynamics. In: The DelFly. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9208-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9208-0_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9207-3

  • Online ISBN: 978-94-017-9208-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics