Skip to main content

Introduction to Flapping Wing Design

  • Chapter
  • First Online:

Abstract

This chapter treats the main choices, issues, and tradeoffs in the design of flapping wing MAVs. In particular, we discuss the implications of different tail and wing configurations, the energy source and various types of actuators. We also show how choices elementary to aircraft design, such as the trade-off between fuel/battery mass and payload mass can have rather large effects at the scale of light-weight flapping wing MAVs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(I = V / R\), with I current, V voltage, and R resistance.

References

  1. Osaka slow fliers club. http://blog.goo.ne.jp/flappingwing

  2. S. Avadhanula, R.J. Wood, E. Steltz, J. Yan, R.S. Fearing, Lift force improvements for the micromechanical flying insect, in IEEE International Conference on Intelligent Robots and Systems, 28-30 Oct 2003, Las Vegas NV (2003)

    Google Scholar 

  3. W. Bejgerowski, A. Ananthanarayanan, D. Mueller, S.K. Gupta, Integrated product and process design for a flapping wing drive-mechanism. ASME J. Mech. Design 131 (2009)

    Google Scholar 

  4. O. Chanute, Progress in Flying Machines (Dover, 1894, reprinted 1998)

    Google Scholar 

  5. Toki Corporation. http://www.toki.co.jp/

  6. DARPA, The nano hummingbird surveillance and reconnaissance aircraft developed by aerovironment, inc. under contract to the united states government’s defense advanced research projects agency. http://commons.wikimedia.org/wiki/File:Nano_Hummingbird.jpg (2011)

  7. G.C.H.E. de Croon, K.M.E. de Clerq, R. Ruijsink, B. Remes, C. de Wagter, Design, aerodynamics, and vision-based control of the delfly. Int. J. Micro Air Veh. 1(2), 71–97 (2009)

    Article  Google Scholar 

  8. G.C.H.E. de Croon, M.A. Groen, C. De Wagter, B.D.W. Remes, R. Ruijsink, B.W. van Oudheusden, Design, aerodynamics, and autonomy of the delfly. Bioinspir. Biomimet. 7(2) (2012)

    Google Scholar 

  9. X. Deng, L. Schenato, S.S. Sastry, Flapping flight for biomimetic robotic insects: part ii-flight control design. IEEE Trans. Robot. 22(4), 789–803 (2006)

    Article  Google Scholar 

  10. X. Deng, L. Schenato, W.C. Wu, S.S. Sastry, Flapping flight for biomimetic robotic insects: part i-system modeling. IEEE Trans. Robot. 22(4), 776–788 (2006)

    Article  Google Scholar 

  11. R.S. Fearing, K.H. Chiang, M. Dickinson, D.L. Pick, M. Sitti, J. Yan, Wing transmission for a micromechanical flying insect, in IEEE International Conference on Robotics and Automation, April, 2000 (2000)

    Google Scholar 

  12. S.B. Fuller, M. Karpelson, A. Censi, K.Y. Ma, R.J. Wood, Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. J. R. Soc. Interface 11(97) (2014)

    Google Scholar 

  13. N. Gaissert, R. Mugrauer, G. Mugrauer, A. Jebens, K. Jebens, E.M. Knubben, Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight, in Towards Autonomous Robotic Systems, pp. 90–100. Springer (2014)

    Google Scholar 

  14. J. Gerdes, A. Holness, A. Perez-Rosado, L. Roberts, A. Greisinger, E. Barnett, J. Kempny, D. Lingam, C.-H. Yeh, A. Bruck Hugh et al., Robo raven: a flapping-wing air vehicle with highly compliant and independently controlled wings. Soft Robot. 1(4), 275–288 (2014)

    Article  Google Scholar 

  15. J.W. Gerdes, S.K. Gupta, S. Wilkerson, A review of bird-inspired flapping wing miniature air vehicle designs. J. Mech. Robot. 4(2) (2012)

    Google Scholar 

  16. R. Hainsworth, L. Wolf, Hummingbird feeding. Wildbird Magazine (1993)

    Google Scholar 

  17. C-K. Hsu, J. Evans, S. Vytla, P.G. Huang, Development of flapping wing micro air vehicles - design, CFD, experiment and actual flight, in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida (2010)

    Google Scholar 

  18. M. Karasek, A. Hua, Y. Nan, M. Lalami, A. Preumont, Pitch and roll control mechanism for a hovering flapping wing MAV, in IMAV 2014: International Micro Air Vehicle Conference and Competition 2014, Delft, The Netherlands, 12–15 Aug 2014

    Google Scholar 

  19. M. Karásek, A. Preumont, Flapping flight stability in hover: a comparison of various aerodynamic models. Int. J. Micro Air Veh. 4(3), 203–226 (2012)

    Article  Google Scholar 

  20. M. Keennon, K. Klingebiel, H. Won, A. Andriukov, Development of the nano hummingbird: a tailless flapping wing micro air vehicle, in 50th AIAA Aerospace Science Meeting, pp. 6–12 (2012)

    Google Scholar 

  21. Hobby King. http://www.hobbyking.com/

  22. M. Kovac, M. Bendana, R. Krishnan, J. Burton, M. Smith, R.J. Wood, Multi-stage micro rockets for robotic butterflies. Robot. Syst. Sci. (2012)

    Google Scholar 

  23. N. Leichty, Micro flier radio. http://microflierradio.com/

  24. H. Liu, X. Wang, T. Nakata, K. Yoshida, Aerodynamics and flight stability of a prototype flapping Micro Air Vehicle, in 2012 ICME International Conference on Complex Medical Engineering (CME), pp. 657–662 (2012)

    Google Scholar 

  25. K.Y. Ma, P. Chirarattananon, S.B. Fuller, R.J. Wood, Controlled flight of a biologically inspired, insect-scale robot. Science 340(6132), 603–607 (2013)

    Article  Google Scholar 

  26. P. Muren, The ‘hummer’, a 1-gram flapping wing micro air vehicle, presented at EMAV 2007 (2007)

    Google Scholar 

  27. Plantraco. http://www.plantraco.com/

  28. T.N. Pornsin-Sirirak, Y.-C. Tai, C.-M. Ho, M. Keennon, Microbat: A palm-sized electrically powered ornithopter, in NASA/JPL Workshop on Biomorphic Robots, Pasadena, USA (2001)

    Google Scholar 

  29. C. Richter, H. Lipson, Untethered hovering flapping flight of a 3d-printed mechanical insect. Artif. Life 17, 73–86 (2011)

    Article  Google Scholar 

  30. P.C.S. Fuller, E. Helbling, R. Wood, Using a gyroscope to stabilize the attitude of a fly-sized hovering robot, in International Micro Air Vechicle Competition and Conference 2014, pp. 102–109, Delft, The Netherlands (August 2014)

    Google Scholar 

  31. E. Steltz, S. Avadhanula, R.S. Fearing, High lift force with 275 hz wing beat in MFI, in IEEE International Conference on Intelligent Robots and Systems (2007)

    Google Scholar 

  32. E. Steltz, R.S. Fearing, Dynamometer power output measurements of piezoelectric actuators, in IEEE International Conference on Intelligent Robots and Systems (2007)

    Google Scholar 

  33. M. Sun, Y. Xiong, Dynamic flight stability of a hovering bumblebee. J. Exp. Biol. 208(3), 447–459 (2005)

    Article  Google Scholar 

  34. G.K. Taylor, L.R.T. Adrian, Dynamic flight stability in the desert locust schistocerca gregaria. J. Exp. Biol. 206(16), 2803–2829 (2003)

    Article  Google Scholar 

  35. New Scale Technologies. http://www.newscaletech.com/

  36. T. van Wageningen, Design analysis for a small scale hydrogen peroxide powered engine for a flapping wing mechanism micro air vehicle. Master’s thesis, Delft University of Technology (2012)

    Google Scholar 

  37. C. De Wagter, The delfly micro ia a 10 cm wing span 3.07 grams flapping wing mav equipped with a camera. it was first built in 2008. https://en.wikipedia.org/wiki/DelFly#/media/File:DelFly_Micro_2008_V1.jpg (2008)

  38. R.J. Wood, The first takeoff of a biologically-inspired at-scale robotic insect. IEEE Trans. Robot. 24(2), 341–347 (2008)

    Article  Google Scholar 

  39. R.J. Wood, S. Avadhanula, R.S. Fearing, microrobotics using composite materials: the micromechanical flying insect thorax, in IEEE International Conference on Robotics and Automation 2003, Taipei, Taiwan, pp. 1842–1849 (2003)

    Google Scholar 

  40. Atomic Workshop. http://www.atomicworkshop.co.uk/

  41. P. Zdunich, D. Bilyk, M. MacMaster, D. Loewen, J. DeLaurier, R. Kornbluh, T. Low, S. Stanford, D. Holeman, Development and testing of the mentor flapping-wing micro air vehicle. J. Aircr. 44(5), 1701–1711 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. H. E. de Croon .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Bussiness Media Dordrecht

About this chapter

Cite this chapter

de Croon, G.C.H.E., Perçin, M., Remes , B.D.W., Ruijsink, R., De Wagter, C. (2016). Introduction to Flapping Wing Design. In: The DelFly. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9208-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9208-0_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9207-3

  • Online ISBN: 978-94-017-9208-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics