Skip to main content

Autonomous Flight with Onboard Stereo Vision

  • Chapter
  • First Online:
The DelFly

Abstract

We shift our focus to the use of stereo vision for autonomous flight. Stereo vision implies carrying two cameras on board, which adds weight and increases the power consumption. Still, it also allows for instantaneous distance estimates, which is a considerable advantage on a moving (and oscillating) flapping wing MAV. In particular, we explain the onboard stereo vision and control algorithms that allow the 20-g DelFly Explorer to autonomously fly around in unknown environments for as long as its battery lasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.youtube.com/watch?v=2KPgPWb2Gkg.

References

  1. M.F. Land, D.-E. Nilsson, Animal Eyes (Oxford University Press, New York, 2002)

    Google Scholar 

  2. D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M.K. Dobrzynski, G. LEplattenier, F. Recktenwald, H.A. Mallot, N. Franceschini, Miniature curved artificial compound eyes. Proc. Natl. Acad. Sci. U.S.A, PNAS 110(23), 9267–9272 (2013)

    Google Scholar 

  3. N. Franceschini, J.M. Pichon, C. Blanes, J.M. Brady, From insect vision to robot vision. Philos. Trans. Biol. Sci. 337(1281), 283–294 (1992)

    Article  Google Scholar 

  4. F. Ruffier, N.H. Franceschini, Aerial robot piloted in steep relief by optic flow sensors, in (IROS 2008) (2008), pp. 1266–1273

    Google Scholar 

  5. G. Sabiron, P. Chavent, T. Raharijaona, P. Fabiani, F. Ruffier, Low-speed optic-flow sensor onboard an unmanned helicopter flying outside over fields, in IEEE International Conference on Robotics and Automation (2013)

    Google Scholar 

  6. F. Garcia Bermudez, R. Fearing, Optical flow on a flapping wing robot, in IROS 2009 (2009), pp. 5027–5032

    Google Scholar 

  7. G.C.H.E. de Croon, E. de Weerdt, C. de Wagter, B.D.W. Remes, R. Ruijsink, The appearance variation cue for obstacle avoidance. IEEE Trans. Robot. 28(2), 529–534 (2012)

    Article  Google Scholar 

  8. S. Tijmons, G.C.H.E. de Croon, B.D.W. Remes, C. De Wagter, R. Ruijsink, E-J. Van Kampen, Q. Chu, Stereo vision based obstacle avoidance on flapping wing mavs, in EuroGNC (2013)

    Google Scholar 

  9. F. Bonin-Font, A. Ortiz, G. Oliver, Visual navigation for mobile robots: a survey. J. Intell. Robot. Syst. 53(3), 263–296 (2008)

    Google Scholar 

  10. A. Kelly, B. Nagy, Reactive nonholonomic trajectory generation via parametric optimal control. Int. J. Robot. Res. 22(7–8), 583–601 (2003)

    Article  Google Scholar 

  11. E. Papadopoulos, I. Poulakakis, I. Papadimitriou, On path planning and obstacle avoidance for nonholonomic platforms with manipulators: a polynomial approach. Int. J. Robot. Res. 21(4), 367–383 (2002)

    Article  Google Scholar 

  12. M. Hwangbo, J. Kuffner, T. Kanade, Efficient two-phase 3d motion planning for small fixed-wing UAVs, in IEEE International Conference on Robotics and Automation (ICRA) (2007), pp. 1035–1041

    Google Scholar 

  13. G. Roussos, D.V. Dimarogonas, K.J. Kyriakopoulos, 3d navigation and collision avoidance for nonholonomic aircraftlike vehicles. Int. J. Adapt. Control Signal Process. 24(10), 900–920 (2010)

    Article  MATH  Google Scholar 

  14. S. Griffiths, J. Saunders, A. Curtis, B. Barber, T. McLain, R. Beard, Maximizing miniature aerial vehicles. IEEE Robot. Autom. Mag. 3, 34–43 (2006)

    Article  Google Scholar 

  15. S. Griffiths, J. Saunders, A. Curtis, B. Barber, T. McLain, R. Beard, Obstacle and terrain avoidance for miniature aerial vehicles, in In Advances in Unmanned Aerial Vehicles (Springer, Netherlands, 2007), pp. 213–244

    Google Scholar 

  16. D. Jia, J. Vagners, Parallel evolutionary algorithms for uav path planning, in Proceedings of the AIAA 1st Intelligent Systems Conference (2004)

    Google Scholar 

  17. J.-C. Zufferey, A. Klaptocz, A. Beyeler, J.-D. Nicoud, D. Floreano, A 10-gram microflyer for vision-based indoor navigation, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2006)

    Google Scholar 

  18. S. Nolfi, Power and the limits of reactive agents. Neurocomputing 42(1–4), 119–145 (2002)

    Article  MATH  Google Scholar 

  19. G.C.H.E. de Croon, M.A. Groen, C. De Wagter, B.D.W. Remes, R. Ruijsink, B.W. van Oudheusden, Design, aerodynamics, and autonomy of the delfly. Bioinspiration Biomimetics 7(2), 025003 (2012)

    Google Scholar 

  20. S. Tijmons, G.C.H.E. de Croon, B.D.W. Remes, C. De Wagter, R. Ruijsink, E. van Kampen, Q.P. Chu, Off-board processing of stereo vision images for obstacle avoidance on a flapping wing mav, in Pegasus AIAA conference, Prague (2013)

    Google Scholar 

  21. S. Forstmann, Y. Kanou, J. Ohya, S. Thuering, A.Schmitt, Real-time stereo by using dynamic programming, in Computer Vision and Pattern Recognition Workshop (CVPRW) (2004), pp. 29–29

    Google Scholar 

  22. H. Hirschmuller, Accurate and efficient stereo processing by semi-global matching and mutual information. Comput. Vision Pattern Recogn. 2, 807–814 (2005)

    Google Scholar 

  23. D. Gallup, J.M. Frahm, P. Mordohai, Q. Yang, M. Pollefeys, Real-time plane-sweeping stereo with multiple sweeping directions, in Computer Vision and Pattern Recognition (CVPR) (2007), pp. 1–8

    Google Scholar 

  24. S. Tijmons, G.C.H.E. de Croon, B.D.W. Remes, C. De Wagter, R. Ruijsink, Obstacle avoidance by stereo vision on flapping wing mavs (Submitted)

    Google Scholar 

  25. G.C.H.E. de Croon, C. De Wagter, B.D.W. Remes, R. Ruijsink, Sub-sampling: real-time vision for micro air vehicles. Robot. Auton. Syst. 60(2), 167–181 (2012)

    Google Scholar 

  26. C. De Wagter, S. Tijmons, B.D.W. Remes, G.C.H.E. de Croon, Autonomous flight of a 20-gram flapping wing mav with a 4-gram onboard stereo vision system, in 2014 IEEE International Conference on Robotics and Automation (ICRA 2014) 2014

    Google Scholar 

Download references

Acknowledgments

This chapter is partly based on [8, 26]. We would like to thank Sjoerd Tijmons, who has been a major contributor to the work on stereo vision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. H. E. de Croon .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Bussiness Media Dordrecht

About this chapter

Cite this chapter

de Croon, G.C.H.E., Perçin, M., Remes , B.D.W., Ruijsink, R., De Wagter, C. (2016). Autonomous Flight with Onboard Stereo Vision. In: The DelFly. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9208-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9208-0_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9207-3

  • Online ISBN: 978-94-017-9208-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics