Skip to main content

Robustness Analysis of City Road Network at Different Granularities

  • Chapter
  • First Online:

Abstract

Road networks are the main carriers of social-economic activities as well as cargo transportation. Given the importance of city road networks, understanding their robustness is becoming an important issue for urban planning and traffic management at all levels. Analyzing the robustness of city road networks quantitatively has always been a difficult task due to the complexity of city road networks and the distinct difference between network structures at multiple granularities. In this paper, we adopt some quantitative methods rooted from complex network science to explore the robustness of city road networks at three different granularities. The results show that the road segment based method lacks the sensitivity under intentional attack, and the stroke based method cannot represent the split procedure of city road networks under attack. Neither of them is appropriate to evaluate the robustness of city road networks. The community based evaluation method, which can reflect the network change situation under attack at a mesoscopic view, is arguably a suitable method for robustness evaluation of city road networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adar, E., & Kim, M. (2007). SoftGUESS: Visualization and exploration of code clones in context. International Conference on Software Engineering: Proceedings of the 29th International Conference on Software Engineering, 20(26), 762–766. doi: 10.1109/ICSE.2007.76.

  • Albert, R., Albert, I., & Nakarado, G. L. (2004). Structural vulnerability of the North American power grid. Physical Review E, 69(2), 025103. doi:10.1103/PhysRevE.69.025103.

    Article  Google Scholar 

  • Barthelemy, M. (2004). Betweenness centrality in large complex networks. The European Physical Journal B-Condensed Matter and Complex Systems, 38(2), 163–168. doi:10.1140/epjb/e2004-00111-4.

    Article  Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B: Methodological, 39, 1–38.

    Google Scholar 

  • Demšar, U., Špatenková, O., & Virrantaus, K. (2008). Identifying critical locations in a spatial network with graph theory. Transactions in GIS, 12(1), 61–82. doi:10.1111/j.1467-9671.2008.01086.x.

    Article  Google Scholar 

  • Diestel, R. (2005). Graph theory. Heidelberg: Springer.

    Google Scholar 

  • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174. doi:10.1016/j.physrep.2009.11.002.

    Article  Google Scholar 

  • Gulbahce, N., & Lehmann, S. (2008). The art of community detection. Bioessays, 30(10), 934–938. doi:10.1002/bies.20820.

    Article  Google Scholar 

  • Holme, P., Kim, B. J., Yoon, C. N., & Han, S. K. (2002). Attack vulnerability of complex networks. Physical Review E, 65(5), 056109. doi:10.1103/PhysRevE.65.056109.

    Article  Google Scholar 

  • Jenelius, E., Petersen, T., & Mattsson, L. G. (2006). Importance and exposure in road network vulnerability analysis. Transportation Research Part A: Policy and Practice, 40(7), 537–560. doi:10.1016/j.tra.2005.11.003.

    Google Scholar 

  • Jiang, B. (2007). A topological pattern of urban street networks: Universality and peculiarity. Physica A: Statistical Mechanics and Its Applications, 384(2), 647–655.

    Article  Google Scholar 

  • Jiang, B., Zhao, S., & Yin, J. (2008). Self-organized natural roads for predicting traffic flow: A sensitivity study. Journal of Statistical Mechanics: Theory and Experiment, P07008. doi:10.1088/1742-5468/2008/07/P07008.

  • Moody, J., & White, D. R. (2003). Structural cohesion and embeddedness: A hierarchical concept of social groups. American Sociological Review, 68, 103–127. doi:10.2307/3088904.

    Article  Google Scholar 

  • Newman, M. E. J. (2010). Networks: An introduction. New York: Oxford University Press.

    Book  Google Scholar 

  • Porta, S., Crucitti, P., & Latora, V. (2006a). The network analysis of urban streets: A primal approach. Environment and Planning B: Planning and Design, 33(5), 705–725. doi:10.1016/j.physa.2005.12.063.

    Article  Google Scholar 

  • Porta, S., Crucitti, P., & Latora, V. (2006b). The network analysis of urban streets: A dual approach. Physica A: Statistical Mechanics and Its Applications, 369(2), 853–866. doi:10.1016/j.physa.2005.12.063.

    Article  Google Scholar 

  • Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3), 036106. doi:10.1103/PhysRevE.76.036106.

    Article  Google Scholar 

  • Santos, B. F., Antunes, A. P., & Miller, E. J. (2010). Interurban road network planning model with accessibility and robustness objectives. Transportation Planning and Technology, 33(3), 297–313. doi:10.1080/03081061003732375.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–442. doi:10.1038/30918.

    Article  Google Scholar 

  • Xie, F., & Levinson, D. (2009). Topological evolution of surface transportation networks. Computers, Environment and Urban Systems, 33(3), 211–223. doi:10.1016/j.compenvurbsys.2008.09.009.

    Article  Google Scholar 

  • Yazdani, A., & Jeffrey, P. (2011). Complex network analysis of water distribution systems. Chaos, 21(1), 016111. doi:10.1063/1.3540339.

    Article  Google Scholar 

  • Yin, Y., Madanat, S. M., & Lu, X. Y. (2009). Robust improvement schemes for road networks under demand uncertainty. European Journal of Operational Research, 198(2), 470–479. doi:10.1016/j.ejor.2008.09.008.

    Article  Google Scholar 

  • Zhang, L., & Levinson, D. (2008). Investing for reliability and security in transportation networks. Journal of the Transportation Research Board, 2041(1), 1–10.

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported by the Chinese NSFC Program under grant No. 41271408, the Chinese Hi-tech Research and Development Program under grant No. 2012AA12A211, and State Key Laboratory of Resources and Environmental Information System open foundation No. 088RA500KA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht.

About this chapter

Cite this chapter

Duan, Y., Lu, F. (2015). Robustness Analysis of City Road Network at Different Granularities. In: Kwan, MP., Richardson, D., Wang, D., Zhou, C. (eds) Space-Time Integration in Geography and GIScience. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9205-9_8

Download citation

Publish with us

Policies and ethics