Skip to main content

Identification of Missing Proteins: Toward the Completion of Human Proteome

  • Chapter
  • First Online:

Part of the book series: Translational Bioinformatics ((TRBIO,volume 6))

Abstract

Undoubtedly, one of the greatest achievements of scientific research was the completion of sequencing the human genome in 2003 that is still unmatched in size of collaborative efforts (International Human Genome Sequencing Consortium 2004). The social benefit of the knowledge generated is better understanding the expressions of genes in healthy and diseased conditions, which in turn can lead to better diagnosis and treatment of many diseases, including various forms of cancer. Notably, the technological developments have continuously delivered efficient tools to overcome the difficulties of mapping about three billion base pair long genetic codes. As an additional outcome, today, we know that the human chromosomes hold about 20,300 genes coding for all functional proteins in the wide versatility of biological activities of cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aebersold R, Bader GD, Edwards AM, et al. The biology/disease-driven human proteome project (B/D-HPP): enabling protein research for the life sciences community. J Proteome Res. 2013;12(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  • Anderson NL, Anderson NG. The human plasma proteome – history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1(11):845–67.

    Article  CAS  PubMed  Google Scholar 

  • Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res. 2004;3(2):235–44.

    Article  CAS  PubMed  Google Scholar 

  • Berglund L, Bjorling E, Oksvold P, et al. A genecentric human protein atlas for expression profiles based on antibodies. Mol Cell Proteomic MCP. 2008;7(10):2019–27.

    Article  CAS  Google Scholar 

  • Björling E, Uhlén M. Antibodypedia, a portal for sharing antibody and antigen validation data. Mol Cell Proteomics. 2008;7(10):2028–37.

    Article  PubMed  Google Scholar 

  • Craig R, Cortens JP, Beavis RC. Open source system for analyzing, validating, and storing protein identification data. J Proteome Res. 2004;3(6):1234–42.

    Article  CAS  PubMed  Google Scholar 

  • Desiere F, Deutsch EW, King NL, et al. The PeptideAtlas project. Nucleic Acids Res. 2006;34 Suppl 1:D655–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Domon B, Aebersold R. Review – mass spectrometry and protein analysis. Science. 2006;312(5771):212–7.

    Article  CAS  PubMed  Google Scholar 

  • Fenyo D, Eriksson J, Beavis R. Mass spectrometric protein identification using the global proteome machine. Methods Mol Biol. 2010;673:189–202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaudet P, Argoud-Puy G, Cusin I, et al. neXtProt: organizing protein knowledge in the context of Human Proteome Projects. J Proteome Res. 2013;12(1):293–8.

    Article  CAS  PubMed  Google Scholar 

  • Goode RJ, Yu S, Kannan A, et al. The proteome browser web portal. J Proteome Res. 2013;12(1):172–8.

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Wang D, Liu Z, et al. CAPER: a chromosome-assembled human proteome browsER. J Proteome Res. 2013;12(1):179–86.

    Article  CAS  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

    Article  Google Scholar 

  • Islam MT, Garg G, Hancock WS, Risk BA, Baker MS, Ranganathan S. Protannotator: a semiautomated pipeline for chromosome-wise functional annotation of the “Missing”. J Proteome Res. 2014;13(1):76–83.

    Article  CAS  PubMed  Google Scholar 

  • Jeong S-K, Lee H-J, Na K, et al. GenomewidePDB, a proteomic database exploring the comprehensive protein parts list and transcriptome landscape in human chromosomes. J Proteome Res. 2013;12(1):106–11.

    Article  CAS  PubMed  Google Scholar 

  • Lane L, Argoud-Puy G, Britan A, et al. neXtProt: a knowledge platform for human proteins. Nucleic Acids Res. 2012;40(Database issue):D76–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lane L, Bairoch A, Beavis RC, et al. Metrics for the Human Proteome Project 2013–2014 and strategies for finding missing proteins. J Proteome Res. 2014;13(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  • Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol. 2008;4:222.

    PubMed Central  PubMed  Google Scholar 

  • Legrain P, Aebersold R, Archakov A, et al. The human proteome project: current state and future direction. Mol Cell Proteomic MCP. 2011;10(7):M111.009993.

    Article  Google Scholar 

  • Lilja H, Ulmert D, Bjork T, et al. Long-term prediction of prostate cancer up to 25 years before diagnosis of prostate cancer using prostate kallikreins measured at age 44 to 50 years. J Clin Oncol. 2007;25(4):431–6.

    Article  CAS  PubMed  Google Scholar 

  • Lopez MF, Rezai T, Sarracino DA, et al. Selected reaction monitoring-mass spectrometric immunoassay responsive to parathyroid hormone and related variants. Clin Chem. 2010;56(2):281–90.

    Article  CAS  PubMed  Google Scholar 

  • Mann M. Comparative analysis to guide quality improvements in proteomics. Nat Methods. 2009;6(10):717–9.

    Article  CAS  PubMed  Google Scholar 

  • Martens L, Hermjakob H, Jones P, et al. PRIDE: the proteomics identifications database. Proteomics. 2005;5(13):3537–45.

    Article  CAS  PubMed  Google Scholar 

  • Munoz J, Low TY, Kok YJ, et al. The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells. Mol Syst Biol. 2011;7:550.

    Article  PubMed Central  PubMed  Google Scholar 

  • Olsen JV, Schwartz JC, Griep-Raming J, et al. A dual pressure linear ion trap orbitrap instrument with very high sequencing speed. Mol Cell Proteomics. 2009;8(12):2759–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paik YK, Jeong SK, Omenn GS, et al. The Chromosome-Centric Human Proteome Project for cataloging proteins encoded in the genome. Nat Biotechnol. 2012a;30(3):221–3.

    Article  CAS  PubMed  Google Scholar 

  • Paik YK, Omenn GS, Uhlen M, et al. Standard guidelines for the Chromosome-Centric Human Proteome Project. J Proteome Res. 2012b;11(4):2005–13.

    Article  CAS  PubMed  Google Scholar 

  • Paik Y-K, Omenn GS, Thongboonkerd V, Marko-Varga G, Hancock WS. Genome-wide proteomics, chromosome-Centric Human Proteome Project (C-HPP), Part II. J Proteome Res. 2014;13(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  • Picotti P, Rinner O, Stallmach R, et al. High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods. 2010;7(1):43–6.

    Article  CAS  PubMed  Google Scholar 

  • Ranganathan S, Khan JM, Garg G, Baker MS. Functional annotation of the human chromosome 7 “Missing” proteins: a bioinformatics approach. J Proteome Res. 2013;12(6):2504–10.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Claassen M, Aebersold R. Directed mass spectrometry: towards hypothesis-driven proteomics. Curr Opin Chem Biol. 2009;13(5–6):510–7.

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Fillmore TL, Sun X, et al. Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc Natl Acad Sci U S A. 2012;109(38):15395–400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shiromizu T, Adachi J, Watanabe S, et al. Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-Centric Human Proteome Project. J Proteome Res. 2013;12(6):2414–21.

    Article  CAS  PubMed  Google Scholar 

  • Smith BE, Hill JA, Gjukich MA, Andrews PC. Tranche distributed repository and ProteomeCommons.org. Methods Mol Biol. 2011;696:123–45.

    Article  CAS  PubMed  Google Scholar 

  • Song C, Wang F, Cheng K, et al. Large-scale quantification of single amino-acid variations by a variation-associated database search strategy. J Proteome Res. 2014;13(1):241–8.

    Article  CAS  PubMed  Google Scholar 

  • The UniProt Consortium. Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 2011;39(Database issue):D214–9.

    Article  PubMed Central  Google Scholar 

  • Végvári Á, Sjödin K, Rezeli M, et al. Identification of a novel proteoform of prostate specific antigen (SNP-L132I) in clinical samples by multiple reaction monitoring. Mol Cell Proteomic MCP. 2013;12(10):2761–73.

    Article  Google Scholar 

  • Wang D, Liu Z, Guo F, et al. CAPER 2.0: an interactive, configurable, and extensible workflow-based platform to analyze data sets from the Chromosome-Centric Human Proteome Project. J Proteome Res. 2014;13(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  • Whiteaker JR, Zhao L, Zhang HY, et al. Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Anal Biochem. 2007;362(1):44–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whiteaker JR, Zhao L, Abbatiello SE, et al. Evaluation of large scale quantitative proteomic assay development using peptide affinity-based mass spectrometry. Mol Cell Proteomic MCP. 2011;10(4):M110.005645.

    Article  Google Scholar 

  • Zgoda VG, Kopylov AT, Tikhonova OV, et al. Chromosome 18 transcriptome profiling and targeted proteome mapping in depleted plasma, liver tissue and HepG2 Cells. J Proteome Res. 2013;12(1):123–34.

    Article  CAS  PubMed  Google Scholar 

  • Zhong J, Cui Y, Guo J, et al. Resolving chromosome-centric human proteome with translating mRNA analysis: a strategic demonstration. J Proteome Res. 2014;13(1):50–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ákos Végvári Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Végvári, Á. (2014). Identification of Missing Proteins: Toward the Completion of Human Proteome. In: Marko-Varga, G. (eds) Genomics and Proteomics for Clinical Discovery and Development. Translational Bioinformatics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9202-8_2

Download citation

Publish with us

Policies and ethics