Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 108))

  • 1993 Accesses

Abstract

A brief presentation of the hardware of two main facilities (ALICE in MIR space station and CPF onboard the Space Shuttle) dedicated to the experiments analyzed in the book. The availability of long-duration experimental runs (typically greater than one week long) and the high quality of the microgravity environment (residual accelerations typically in the range \(10^{-4}\text { to }10^{-3}\, g_{0}\)) have allowed fast temperature equilibration and slow density relaxation processes to be investigated in detail using these facilities. In addition, the principle and the limitations of a \(\mathrm H _{2}\) magnetic levitation setup used to create microgravity conditions on Earth are also presented. Although it does not compensate for gravity in a uniform manner, this setup provides much longer experimental times and is very useful for calibrating instrumentation and performing exploratory research, in particular to investigate the effects of vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AirLiquide (1976) Encyclopedie des Gaz. Elsevier, Paris

    Google Scholar 

  2. Barmatz M, Hahn I, Lipa JA, Duncan RV (2007) Critical phenomena in microgravity: past, present, and future. Rev Mod Phys 79(1):1

    Article  Google Scholar 

  3. Beaugnon E, Tournier R (1991) Levitation of water and organic substances in high static magnetic fields. J Phys III(1):1423–1428

    Google Scholar 

  4. Beaugnon E, Bourgault D, Braithwaite D, de Rango P, Sulpice A, Tournier R, de la Bathie RP (1993) Material processing in high static magnetic field. A review of an experimental study on levitation, phase separation, convection and texturation. J Phys I 3:399

    Google Scholar 

  5. Beysens D, Garrabos Y (2001) Critical and supercritical fluids and related phenomena, Chap. 8. Taylor and Francis, New York

    Google Scholar 

  6. Beysens D, Chatain D, Evesque P, Garrabos Y (2005) High-frequency driven capillary flows speed up the gas–liquid phase transition in zero-gravity conditions. Phys Rev Lett 95(3):034502

    Article  Google Scholar 

  7. Beysens D, Chatain D, Evesque P, Garrabos Y (2008) Nucleation and growth of a bubble pattern under vibrations in weightlessness. Europhys Lett 82:36003

    Article  Google Scholar 

  8. Beysens D, Chatain D, Garrabos Y, Lecoutre C, Palencia F, Evesque P, Nikolayev VS (2007) The effect of vibrations on heterogeneous fluids: some studies in weightlessness. Acta Astronaut 61:1002–1009

    Article  Google Scholar 

  9. Braunbeck W (1939) Need research. Z Phys 112:735

    Google Scholar 

  10. Cork M, Dewandre T, Hueser D (1993) The critical point facility and the IML-2 mission. ESA Bull 74:36–44

    Google Scholar 

  11. de Bruijn R (1999) Heat transfer in a critical fluid under microgravity conditions: a spacelab experiment. PhD thesis, University of Amsterdam, Amsterdam, p 197

    Google Scholar 

  12. de Bruijn R, van Diest RJJ, Karapantsios TD, Michels AC, Wakeham WA, Trusler JPM (1997) Heat transfer in pure critical fluids surrounded by finitely conducting boundaries in microgravity. Phys A 242(1–2):119–140

    Article  Google Scholar 

  13. Frohlich T, Guenoun P, Bonetti M, Perrot F, Beysens D, Garrabos Y, Le Neindre B, Bravais P (1996) Adiabatic versus conductive heat transfer in off-critical SF\(_{6}\) in the absence of convection. Phys Rev E 54(2):1544–1549

    Article  Google Scholar 

  14. Garrabos Y, Lecoutre-Chabot C, Hegseth J, Nikolayev VS, Beysens D, Delville J-P (2001) Gas spreading on a heated wall wetted by liquid. Phys Rev E 64(5):051602

    Article  Google Scholar 

  15. Guenoun P, Khalil B, Beysens D, Garrabos Y, Kammoun F, Le Neindre B, Zappoli B (1993) Thermal cycle around the critical point of carbon dioxide under reduced gravity. Phys Rev E 47(3):1531–1540

    Article  Google Scholar 

  16. Gurfein V, Beysens D, Garrabos Y, Le Neindre B (1991) Simple grid technique to measure refractive index gradients. Opt Commun 85:147–152

    Article  Google Scholar 

  17. Huijser PH, Michels AC, Trappeniers NJ (1983) Optical investigation of critical behavior in simple fluids at reduced gravity. ESA Mater Sci Microgravity SEE N83-31637(20–12):377–384

    Google Scholar 

  18. Israelson UE, Larson M (1995) Aiaa 95-0272. In: The 33rd aerospace sciences meeting and exhibit, Reno, NV, USA, 9–12 January 1995

    Google Scholar 

  19. Laherrere JM, Koutsikides P (1993) Alice, an instrument for the analysis of fluids close to their critical point in microgravity. Acta Astronaut 29:861–870

    Article  Google Scholar 

  20. Lecoutre C, Garrabos Y, Georgin E, Palencia F, Beysens D (2009) Turbidity data of weightless SF\(_6\) near its liquid–gas critical point. Int J Thermophys 30:810–832

    Article  Google Scholar 

  21. Lorin C, Mailfert A, Chatain D, Félice H, Beysens D (2009) Magnetogravitational potential revealed near a liquid–vapor critical point. J Appl Phys 106:033905-1–033905-4

    Article  Google Scholar 

  22. Marcout R, Zwilling JF, Laherrere JM, Garrabos Y, Beysens D (1995) Alice 2, an advanced facility for the analysis of fluids close to their critical point in microgravity. Microgravity Q 5:162–170

    Google Scholar 

  23. Michels AC, de Bruijn R, Karapantsios TD, van Diest RJJ, van den Berg HR, van Deenen B, Sakonidou EP, Wakeham WA, Trusler JPM, Louis A, Papadaki M, Straub J (1995) Adiabatic compressive heating of critical fluids under microgravity conditions. In: The 30th 1995 national heat transfer conference, vol 3. Portland, OR, USA, 6–8 August 1995

    Google Scholar 

  24. Morteau C, Salzman M, Garrabos Y, Beysens D (1997) In: Viviani A (ed) The 2nd European symposium on fluids in space, Napoli, Italy, 22–26 April 1997. Roma, Congressi srl, pp 327–333

    Google Scholar 

  25. Quettier L, Felice H, Mailfert A, Chatain D, Beysens D (2005) Magnetic compensation of gravity forces in liquid–gas mixtures: surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts. Eur Phys J Appl Phys 32:167–175

    Article  Google Scholar 

  26. Valles JM Jr, Lin K, Denegre JM, Mowry KL (1997) Magnetic field gradient levitation of \(xenopus\) \(laevis\): towards low gravity simulation. Biophys J 73:1130–1133

    Article  Google Scholar 

  27. van den Assem D, Huijser RH, Vreeburg JPB (1987) On the development of an optical diagnostic instrument for fluid-physics research in microgravity. J Phys E: Sci Instrum 20:3775

    Article  Google Scholar 

  28. van Lieshout Th SH, Michels AC (1997) Microkelvin gradient-reduction thermostats for fluid experiment on microgravity platforms. In: Viviani A (ed) The 2nd European symposium on fluids in space. Congressi srl, Rome, pp 459–462

    Google Scholar 

  29. Wakeham WA, Trusler JPM, de Bruijn R, van Diest RJJ, Karapantsios TD, Michels AC (1997) Heat transport near the critical region of a pure fluid in microgravity. In: Viviani A (ed) The 2nd European symposium on fluids in space. Congressi srl, Rome

    Google Scholar 

  30. Weilert MA, Whitaker DL, Maris HJ, Seidel GM (1996) Magnetic levitation and noncoalescence of liquid helium. Phys Rev Lett 77(23):4840–4843

    Article  Google Scholar 

  31. Weilert MA, Whitaker DL, Maris HJ, Seidel GM (1997) Magnetic levitation of liquid helium. J Low Temp Phys 106:101–131

    Article  Google Scholar 

  32. Whitaker DL, Weilert MA, Vicente CL, Maris HJ, Seidel GM (1998) Oscillations of charged helium ii drops. J Low Temp Phys 110:173–178

    Article  Google Scholar 

  33. Wilkinson RA (1998) Density relaxation of liquid–vapor critical fluids in earth’s gravity. Int J Thermophys 19:1175–1183

    Article  Google Scholar 

  34. Wilkinson RA, Zimmerli GA, Hao H, Moldover MR, Berg RF, Johnson WL, Ferrell RA, Gammon RW (1998) Equilibration near the liquid–vapor critical point in microgravity. Phys Rev E 57(1):436–448

    Article  Google Scholar 

  35. Zimmerli GA, Wilkinson RA, Ferrell RA, Moldover MR (1999) Electrostriction of a near-critical fluid in microgravity. Phys Rev E 59(5):5862–5869

    Article  Google Scholar 

  36. Zimmerli GA, Wilkinson RA, Ferrell RA, Moldover MR (1999) Electrostriction of near-critical SF\(_{6}\) in microgravity. Phys Rev Lett 82(26):5253–5256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Zappoli .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zappoli, B., Beysens, D., Garrabos, Y. (2015). The Hardware. In: Heat Transfers and Related Effects in Supercritical Fluids. Fluid Mechanics and Its Applications, vol 108. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9187-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9187-8_23

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9186-1

  • Online ISBN: 978-94-017-9187-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics