Skip to main content

General Introduction to Near-Critical and Supercritical Fluids

  • Chapter
  • First Online:

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 108))

Abstract

A general introduction on near-critical and supercritical fluids is given including the van der Waals equation of state and the critical region. The notions of order parameter, critical fluctuations and fluctuation correlation length (a natural lengthscale for critical point phenomena) are exposed. Mean-field and renormalized critical exponents are defined and discussed. Concerning critical dynamics, the phenomenon of critical slowing-down is presented as the main aspects of phase separation dynamics, including wetting and adsorption properties. The very strong effects due to earth gravity are discussed, as the means to get rid of it (free fall, satellites, magnetic compensation, Plateau method, etc.). A way to fit experimental values within the approximated van der Waals approach is discussed in details. The critical parameters of many fluids of current use are also given (\(^{3}\text {He}\), \(\text {p}\text {H}_{2}\), \(\text {N}_{2}\), \(\text {O}_{2}\), \(\text {Xe}\), \(\text {CO}_{2}\), \(\text {SF}_{6}\), \(\text {H}_{2}\text {O}\)). Specific aspects concerning scaling laws, universality and renormalization-group, the upper critical dimensionality and the conventional theories of nucleation and spinodal decomposition are given in the annex part.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anisimov MA, Sengers JV (2000) Critical region. In: Equations of state for fluids and fluid mixtures, vol. I. Elsevier, Amsterdam

    Google Scholar 

  2. Bagnuls C, Bervillier C (1984) Nonasymptotic critical behaviour from field theory for ising-like systems in the homogeneous phase: theoretical framework. J Phys Lett 45(3):L95–L100

    Article  Google Scholar 

  3. Bagnuls C, Bervillier C (1985) Nonasymptotic critical behavior from field theory at \(d=3\): the disordered-phase case. Phys Rev B 32(11):7209–7231

    Article  Google Scholar 

  4. Bagnuls C, Bervillier C (2002) Classical-to-critical crossovers from field theory. Phys Rev E 65(6):066132

    Article  Google Scholar 

  5. Bagnuls C, Bervillier C, Meiron DI, Nickel BG (1987) Nonasymptotic critical behavior from field theory at \(d\)=3. ii. The ordered-phase case. Phys Rev B 35(7):3585–3607

    Article  Google Scholar 

  6. Beysens D (1995) Scaling and gravity effects in critical point phenomena. Microgravity Q 5:35–43

    Google Scholar 

  7. Beysens D, Garrabos Y, Chabot C (1998) Hydrodynamics and phase separation in simple fluids. In: Tokuyama M, Oppenheim I (eds) The 8th Tohwa University international symposium on slow dynamics in complex systems. American Institute of Physics, Woodbury, pp 222–235

    Google Scholar 

  8. Beysens D, Gbadamassi M, Moncef-Bouanz B (1983) New developments in the study of binary fluids under shear flow. Phys Rev A 28(4):2491–2509

    Article  Google Scholar 

  9. Beysens D, Robert M (1987) Thickness of fluid interfaces near the critical point from optical reflectivity measurements. J Chem Phys 87:3056–3061; ibid (1990) Erratum. J Chem Phys 93:6911

    Google Scholar 

  10. Bhattacharjee JK, Ferrell RA, Basu RS, Sengers JV (1981) Crossover function for the critical viscosity of a classical fluid. Phys Rev A 24(3):1469–1475

    Article  Google Scholar 

  11. Binder K (1984) Nucleation barriers, spinodals, and the Ginzburg criterion. Phys Rev A 29(1):341–349

    Article  MathSciNet  Google Scholar 

  12. Binder K (1991) Spinodal decomposition. In: Material science and technology: phase transitions in materials, Chapter 5. VCH Verlagsgesellschaft, Weinheim, pp 405–471 (and references therein)

    Google Scholar 

  13. Brezin E (1982) In: LÃ\(\copyright \)vy M, Le Guillou JC, Zinn-Justin J (eds) Phase transitions, CargÚse 1980. Plenum, New York, p 339

    Google Scholar 

  14. Brezin E, Le Guillou JC, Zinn-Justin J (1974) Universal ratios of critical amplitudes near four dimensions. Phys Lett A 47:285–287

    Article  Google Scholar 

  15. Cagniard de la Tour C (1822) Experimente unter hohem drucke. Ann Chim Phys 21:127–131, 178–181

    Google Scholar 

  16. Cahn JW (1997) Critical point wetting. J Chem Phys 66:3667–3672

    Article  Google Scholar 

  17. Calmettes P (1977) Critical transport properties of fluids. Phys Rev Lett 39:1151–1154

    Article  Google Scholar 

  18. Campostrini M, Hasenbusch M, Pelissetto A, Rossi P, Vicari E (2001) Critical behavior of the three-dimensional xy universality class. Phys Rev B 63(21):214503

    Article  Google Scholar 

  19. Carles P (1998) The effect of bulk viscosity on temperature relaxation near the critical point. Phys Fluids 10:2164–2176

    Article  Google Scholar 

  20. Carles P, Dadzie K (2005) Two typical time scales of the piston effect. Phys Rev E 71:066310

    Article  Google Scholar 

  21. Cheng E, Cole MW, Dupont-Roc J, Shaam WF, Treiner J (1993) Novel wetting behaviour in quantum films. Rev Mod Phys 65:557–567

    Article  Google Scholar 

  22. Eckert CA, Knutson BL, Debenedetti PG (1996) Supercritical fluids as solvents for chemical and material processing. Nature 383:313–318

    Article  Google Scholar 

  23. Furukawa H (1985) A dynamical scaling assumption for phase separation. Adv Phys 34:703–750

    Article  Google Scholar 

  24. Garrabos Y (1982) Contribution à l’étude des propriétés d’état des fluides purs dans leur région critique. Thèse de Doctorat d’Etat, Université de Paris 6

    Google Scholar 

  25. Garrabos Y (1985) Phenomenological scale factors for the liquid-vapor critical transition of pure fluids. J Phys (Paris), 46:281–206 (see also http://fr.arxiv.org/abs/condmat/0512347)

  26. Garrabos Y (1986) Scaling behavior of the fluid subclass near the liquid-gas critical point. J Phys (Paris) 47:197–206

    Google Scholar 

  27. Garrabos Y, Bervillier C (2006) Mean crossover functions for uniaxial 3d ising-like systems. Phys Rev E 74(2):021113 (16 p)

    Google Scholar 

  28. Garrabos Y, Lecoutre C, Palencia F, LeNeindre B, Erkey C (2008) Master crossover functions for one-component fluids. Phys Rev E 77:021116

    Google Scholar 

  29. Ginzburg VL (1961) Some remarks on phase transitions of the 2nd kind and the microscopic theory of ferroelectric materials. Sov Phys Solid State 2:1824–1834

    Google Scholar 

  30. Gunton JD, San Miguel M, Sahni PS (1983) The dynamics of first-order phase transitions. In: Phase transitions and critical phenomena, Chap 3, vol 8. Academic, New York, p 269

    Google Scholar 

  31. Hess GB, Sabatini MJ, Chan MHW (1997) Nonwetting of cesium by neon near its critical point. Phys Rev Lett 78(9):1739–1742

    Article  Google Scholar 

  32. Hohenberg PC, Halperin BI (1977) Theory of dynamic critical phenomena. Rev Mod Phys 49:435–479

    Article  Google Scholar 

  33. Houessou C, Guenoun P, Gastaud R, Perrot F, Beysens D (1985) Critical behavior of the binary fluids cyclohexane-methanol, deuterated cyclohexane-methanol and of their isodensity mixture: application to microgravity simulations and wetting phenomena. Phys Rev A 32(3):1818

    Article  Google Scholar 

  34. Jayalakshmi Y, Khalil B, Beysens D (1991) Phase separation under a weak concentration gradient. Phys Rev Lett 69:3088–3091

    Google Scholar 

  35. Justin JZ (2002) Quantum field theory and critical phenomena, 4th edn. Oxford University Press, Oxford

    Book  Google Scholar 

  36. Kadanoff LP, Swift J (1968) Transport coefficients near the liquid-gas critical point. Phys Rev 166:89

    Article  Google Scholar 

  37. Kawasaki K (1970) Kinetic equations and time correlation functions of critical fluctuations. Ann Phys 61(1):1–56

    Google Scholar 

  38. Kawasaki K (1970) Sound attenuation and dispersion near the liquid-gas critical point. Phys Rev A 1:1750

    Google Scholar 

  39. Lee SP (1978) Need research. Chem Phys Lett 57:611

    Article  Google Scholar 

  40. Levelt-Sengers JMH (1975) Experimental thermodynamics, Chap 14, vol 2. Butterworths, London

    Google Scholar 

  41. Le Neindre B, Garrabos Y, Tufeu R (1991) The critical thermal-conductivity enhancement along the critical isochore. Int J Thermophys 12:307–321

    Google Scholar 

  42. Lifshitz IM, Slyosov VV (1961) J Phys Chem Solids 50:19–35

    Google Scholar 

  43. Maxwell JC (1890) The scientific papers of James Clark Maxwell. Cambridge University Press, Cambridge

    Google Scholar 

  44. Moldover MR, Sengers JV, Gammon RW, Hocken RJ (1979) Gravity effects in fluids near the gas-liquid critical point. Rev Mod Phys 51(1):79–99

    Article  Google Scholar 

  45. Nicoll JF, Albright PC (1986) Background fluctuations and Wegner corrections. Phys Rev B 34:1991

    Article  Google Scholar 

  46. Nikolayev VS, Beysens D, Guenoun P (1996) New hydrodynamic mechanism for drop coarsening. Phys Rev Lett 76:3144–3147

    Google Scholar 

  47. Normand C, Pomeau Y, Vellarde MG (1977) Convective instabilities: a physicist’s approach. Rev Mod Phys 49(3):581–624

    Article  Google Scholar 

  48. Onuki A (1984) Electric field effects in fluids near the critical point. Europhys Lett 29:611–616

    Article  Google Scholar 

  49. Onuki A (1997) Bulk viscosity near the critical point. J Phys Soc Jpn 66:511–513

    Article  Google Scholar 

  50. Onuki A (2002) Phase transition dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  51. Onuki A, Kawasaki K (1978) Fluctuations in nonequilibrium steady states with laminar shear flow: classical fluids near the critical point. Prog Theor Phys Suppl 64:436–441

    Article  Google Scholar 

  52. Onuki A, Kawasaki K (1979) Light scattering by critical fluids in the presence of a uniform shear flow. Phys Lett A 72:233–235

    Google Scholar 

  53. Onuki A, Kawasaki K (1979) Nonequilibrium steady state of critical fluids under shear flow: a renormalization group approach. Ann Phys 121:456–528

    Google Scholar 

  54. Ornstein LS, Zernike F (1918) Contributions to the kinetic theory of solids. The thermal pressure of isotropic solids. Proc Acad Sci Amsterdam 17:793–803 (see Phys Z 19:134)

    Google Scholar 

  55. Patashinskii AZ, Pokroviskii VL (1979) Fluctuation theory of phase transitions. Pergamon, Oxford

    Google Scholar 

  56. Perrot F, Beysens D, Garrabos Y, Fröhlich T, Guenoun P, Bonetti M, Bravais P (1999) Morphology transition observed in a phase separating fluid. Phys Rev E 59(3):3079–3083

    Article  Google Scholar 

  57. Privman V, Honenberg PC, Aharony A (1991) Phase transitions and critical phenomena, Universal critical point amplitude relations, Chap, vol 14. Academic, New York, pp 1–134

    Google Scholar 

  58. Quentrec B (1979) A new analysis of sound propagation near the critical point of xenon. J Phys Lett Paris 40(13):257–261

    Article  Google Scholar 

  59. Quettier L, Felice H, Mailfert A, Chatain D, Beysens D (2005) Magnetic compensation of gravity forces in liquid-gas mixtures: surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts. Eur Phys J Appl Phys 32:167–175

    Article  Google Scholar 

  60. Savage PE, Gopalan S, Mizan TI, Martino CJ, Brock EE (1995) Reactions at supercritical conditions: applications and fundamentals. AIChE J 41(7):1723–1778

    Article  Google Scholar 

  61. Schick M (1990) Introduction to wetting phenomena. In: Liquids at interfaces. North Holland, Amsterdam

    Google Scholar 

  62. Schwarzchild K (1992) Gesammelete Werke (collected works), vol 1. Springer, Berlin

    Google Scholar 

  63. Sengers JV, Levelt Sengers JMH (1978) In: Progress in liquid physics. Wiley, New York

    Google Scholar 

  64. Sikkenk JH, van Leeuwen JMJ, Sengers JV (1986) Gravity effects on the fluctuations in a vapor-liquid interface close to the critical temperature. Phys A 139(1):1–27 (and references therein)

    Article  Google Scholar 

  65. Spiegel EA (1965) Convective instabilities in a compressible atmosphere. Astrophys J 141:1068

    Article  MathSciNet  Google Scholar 

  66. Stanley HE (1971) Introduction to phase transitions and critical phenomena. Clarendon, Oxford

    Google Scholar 

  67. Stauffer D, Ferer M, Wortis M (1972) Universality of second-order phase transitions: the scale factor for the correlation length. Phys Rev Lett 29(6):345–349

    Article  Google Scholar 

  68. van der Waals JD (1887) In: Rowlinson JS (ed) On the continuity of the gaseous and liquid states. PhD thesis, Leiden University, Leiden

    Google Scholar 

  69. van der Waals JD (1988) On the continuity of the gaseous and liquid state. Dover Publications Inc, New York

    Google Scholar 

  70. Wegner FJ (1972) Corrections to scaling laws. Phys Rev B 5(11):4529–4536

    Article  Google Scholar 

  71. Widom B (1965) Surface tension and molecular correlations near the critical point. J Chem Phys 43:3892–3897

    Article  Google Scholar 

  72. Wilson KG, Kogut J (1974) The renormalization group and the \(\epsilon \) expansion. Phys Rep 12(2):75–199

    Article  Google Scholar 

  73. Wunenburger R, Chatain D, Garrabos Y, Beysens D (2000) Magnetic compensation of gravity forces in (p-)hydrogen near its critical point: application to weightless conditions. Phys Rev E 62(1):469–476

    Article  Google Scholar 

  74. Zimmerli GA, Wilkinson RA, Ferrell RA, Moldover MR (1999) Electrostriction of a near-critical fluid in microgravity. Phys Rev E 59(5):5862–5869

    Article  Google Scholar 

  75. Zimmerli GA, Wilkinson RA, Ferrell RA, Moldover MR (1999) Electrostriction of near-critical sf\(_{6}\) in microgravity. Phys Rev Lett 82(26):5253–5256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Zappoli .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zappoli, B., Beysens, D., Garrabos, Y. (2015). General Introduction to Near-Critical and Supercritical Fluids. In: Heat Transfers and Related Effects in Supercritical Fluids. Fluid Mechanics and Its Applications, vol 108. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9187-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9187-8_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9186-1

  • Online ISBN: 978-94-017-9187-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics