Skip to main content

Part of the book series: Advances in Predictive, Preventive and Personalised Medicine ((APPPM,volume 5))

Abstract

Monitoring of disease state and of therapy response is highly relevant for efficient patient management. Monitoring tools comprise observation of clinical signs and performing specific examinations such as imaging or blood analyses. This review focusses on the relevance of blood-based biomarker monitoring by circulating nucleic acids for diverse indications that is exemplified on patients who develop or suffer from cancer disease. These indications include (i) screening of patient groups who have a risk to develop a disease, (ii) monitoring response to local or systemic therapies in patients with a defined diagnosis and (iii) early detection of disease recurrence after the primary therapy has ended. Useful biomarkers have to fulfill the highest methodical, pre-analytical and clinical quality criteria and have to be implemented in standardized patient management procedures. The current situation of circulating nucleic acids is summarized on the levels of genetic, epigenetic, transcript, non-coding RNA and nucleosome markers and an outlook is presented as to how these markers can be integrated into a future strategy that enables a personalized management of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dancey JE, Dobbin KK, Groshen S, Jessup JM, Hruszkewycz AH, Koehler M, Parchment R, Ratain MJ, Shankar LK, Stadler WM, True LD, Gravell A, Grever MR; Biomarkers Task Force of the NCI Investigational Drug Steering Committee (2010) Biomarkers Task Force of the NCI Investigational Drug Steering Committee. Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin Cancer Res 16(6):1745–1755

    Google Scholar 

  2. Sackett DL, Haynes RB (2002) The architecture of diagnostic research. BMJ 324(7336):539–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sturgeon CM, Hoffman BR, Chan DW, Ch'ng SL, Hammond E, Hayes DF, Liotta LA, Petricoin EF, Schmitt M, Semmes OJ, Söletormos G, van der Merwe E, Diamandis EP; National Academy of Clinical Biochemistry (2008) National academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in clinical practice: quality requirements. Clin Chem 54(8):e1–e10

    Google Scholar 

  4. Fleischhacker M, Schmidt B, Weickmann S, Fersching DM, Leszinski GS, Siegele B, St­tzer OJ, Nagel D, Holdenrieder S (2011) Methods for isolation of cell-free plasma DNA strongly affect DNA yield. Clin Chim Acta 412(23–24):2085–2088

    Google Scholar 

  5. Jung K, Fleischhacker M, Rabien A (2010) Cell-free DNA in the blood as a solid tumor biomarker – a critical appraisal of the literature. Clin Chim Acta 411(21–22):1611–1624

    Article  CAS  PubMed  Google Scholar 

  6. Sanders I, Holdenrieder S, Walgenbach-Brünagel G, von Ruecker A, Kristiansen G, Müller SC, Ellinger J (2012) Evaluation of reference genes for the analysis of serum miRNA in patients with prostate cancer, bladder cancer and renal cell carcinoma. Int J Urol 19(11):1017–1025

    Google Scholar 

  7. Sourvinou IS, Markou A, Lianidou ES (2013) Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J Mol Diagn 15(6):827–834

    Article  CAS  PubMed  Google Scholar 

  8. Pazzagli M, Malentacchi F, Simi L, Orlando C, Wyrich R, Hartmann CC, Verderio P, Pizzamiglio S, Ciniselli CM, Tichopad A, Kubista M, Gelmini S (2013) SPIDIA-RNA: first external quality assessment for the pre-analytical phase of blood samples used for RNA based analyses. Methods 59(1):20–31

    Google Scholar 

  9. Chiu RW, Poon LL, Lau TK, Leung TN, Wong EM, Lo YM (2001) Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem 47(9):1607–1613

    Google Scholar 

  10. Holdenrieder S, Stieber P, Bodenmueller H, Fertig G, Fürst H, Schmeller N, Untch M, Seidel D (2001) Nucleosomes in serum as a marker for cell death. Clin Chem Lab Med 39:596–605

    Google Scholar 

  11. Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, Wainscoat JS, Johnson PJ, Chang AM, Hjelm NM (1998) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62(4):768–775

    Google Scholar 

  12. Malentacchi F, Pazzagli M, Simi L, Orlando C, Wyrich R, Hartmann CC, Verderio P, Pizzamiglio S, Ciniselli CM, Tichopad A, Kubista M, Gelmini S (2013) SPIDIA-DNA: an external quality assessment for the pre-analytical phase of blood samples used for DNA-based analyses. Clin Chim Acta 424:274–286

    Google Scholar 

  13. Wong D, Moturi S, Angkachatchai V, Mueller R, DeSantis G, van den Boom D, Ehrich M (2013) Blood collection, transport and storage conditions for cell free DNA increases access to prenatal testing. Clin Biochem 46(12):1099–1104

    Google Scholar 

  14. Köberle V, Pleli T, Schmithals C, Augusto Alonso E, Haupenthal J, B­nig H, Peveling-Oberhag J, Biondi RM, Zeuzem S, Kronenberger B, Waidmann O, Piiper A (2013) Differential stability of cell-free circulating microRNAs: implications for their utilization as biomarkers. PLoS One 8(9):e75184

    Google Scholar 

  15. McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A (2011) Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem 57(6):833–840

    Google Scholar 

  16. Stieber P, Heinemann V (2008) Sensible use of tumor markers. J Lab Med 32:339–360

    CAS  Google Scholar 

  17. Holdenrieder S (2013) Trends in the application of tumor markers in the clinical routine. Med Welt 64:12–19

    Google Scholar 

  18. Sturgeon C, Aronsson AC, Duffy MJ, Hansson LO, Klapdor R, van Dalen A (1999) European Group on Tumour Markers (EGTM): consensus recommendations. Anticancer Res 19:2785–2820

    Google Scholar 

  19. Sölétormos G, Duffy MJ, Hayes DF, Sturgeon CM, Barak V, Bossuyt PM, Diamandis EP, Gion M, Hyltoft-Petersen P, Lamerz RM, Nielsen DL, Sibley P, Tholander B, Tuxen MK, Bonfrer JM (2013) Design of tumor biomarker-monitoring trials: a proposal by the European Group on Tumor Markers. Clin Chem 59(1):52–59

    Google Scholar 

  20. Sturgeon CM, Duffy MJ, Stenman UH, Lilja H, Brünner N, Chan DW, Babaian R, Bast RC Jr, Dowell B, Esteva FJ, Haglund C, Harbeck N, Hayes DF, Holten-Andersen M, Klee GG, Lamerz R, Looijenga LH, Molina R, Nielsen HJ, Rittenhouse H, Semjonow A, Shih IeM, Sibley P, Sölétormos G, Stephan C, Sokoll L, Hoffman BR, Diamandis EP; National Academy of Clinical Biochemistry (2008) National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast and ovarian cancers. Clin Chem 54(12):e11–e79

    Google Scholar 

  21. Diamandis EP, Hoffman BR, Sturgeon CM (2008) National academy of clinical biochemistry laboratory medicine practice guidelines for the use of tumor markers. Clin Chem 54(11):1935–1939

    Article  CAS  PubMed  Google Scholar 

  22. Birney E (2012) The making of ENCODE: lessons for big-data projects. Nature 489(7414):49–51

    Article  CAS  PubMed  Google Scholar 

  23. Leggett RM, Ramirez-Gonzalez RH, Clavijo BJ, Waite D, Davey RP (2013) Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front Genet 4:288

    Google Scholar 

  24. Duffy MJ, Crown J (2013) Companion biomarkers: paving the pathway to personalized treatment for cancer. Clin Chem 59(10):1447–1456

    Article  CAS  PubMed  Google Scholar 

  25. Benesova L, Belsanova B, Suchanek S, Kopeckova M, Minarikova P, Lipska L, Levy M, Visokai V, Zavoral M, Minarik M (2013) Mutation-based detection and monitoring of cell-free tumor DNA in peripheral blood of cancer patients. Anal Biochem 433(2):227–234

    Google Scholar 

  26. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10(8):472–484

    Google Scholar 

  27. Pantel K, Alix-Panabières C (2013) Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res 73(21):6384–6388

    Google Scholar 

  28. Stieber P, Nagel D, Heinemann V (2006) Tumor markers in metastatic breast cancer: high tumor specificity within the reference range. J Clin Oncol, ASCO Ann Meeting Proc 24(18S):10554

    Google Scholar 

  29. Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer – a survey. Biochim Biophys Acta 1775:181–232

    Google Scholar 

  30. Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437

    Article  CAS  PubMed  Google Scholar 

  31. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, Kinzler KW, Vogelstein B, Diaz LA Jr (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14(9):985–990

    Google Scholar 

  32. Holdenrieder S, Stieber P (2009) Clinical use of circulating nucleosomes. Crit Rev Clin Lab Sci 46:1–24

    Article  CAS  PubMed  Google Scholar 

  33. Sozzi G, Conte D, Mariani L, Lo Vullo S, Roz L, Lombardo C, Pierotti MA, Tavecchio L (2001) Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res 61:4675–4678

    Google Scholar 

  34. Huang ZH, Li LH, Hua D (2006) Quantitative analysis of plasma circulating DNA at diagnosis and during follow-up of breast cancer patients. Cancer Lett 243:64–70

    Article  CAS  PubMed  Google Scholar 

  35. Frattini M, Gallino G, Signoroni S, Balestra D, Lusa L, Battaglia L, Sozzi G, Bertario L, Leo E, Pilotti S, Pierotti MA (2008) Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer. Cancer Lett 263(2):170–181

    Google Scholar 

  36. Banki F, Mason RJ, Oh D, Hagen JA, DeMeester SR, Lipham JC, Tanaka K, Danenberg KD, Yacoub WN, Danenberg PV, DeMeester TR (2007) Plasma DNA as a molecular marker for completeness of resection and recurrent disease in patients with esophageal cancer. Arch Surg 142(6):533–538

    Google Scholar 

  37. Perego RA, Corizzato M, Brambilla P, Ferrero S, Bianchi C, Fasoli E, Signorini S, Torsello B, Invernizzi L, Bombelli S, Angeloni V, Pitto M, Battaglia C, Proserpio V, Magni F, Galasso G, Mocarelli P (2008) Concentration and microsatellite status of plasma DNA for monitoring patients with renal carcinoma. Eur J Cancer 44(7):1039–1047

    Google Scholar 

  38. Banki F, Yacoub WN, Hagen JA, Mason RJ, Ayazi S, DeMeester SR, Lipham JC, Danenberg K, Danenberg P, DeMeester TR (2008) Plasma DNA is more reliable than carcinoembryonic antigen for diagnosis of recurrent esophageal cancer. J Am Coll Surg 207(1):30–35

    Google Scholar 

  39. An X, Wang FH, Ding PR, Deng L, Jiang WQ, Zhang L, Shao JY, Li YH (2011) Plasma Epstein-Barr virus DNA level strongly predicts survival in metastatic/recurrent nasopharyngeal carcinoma treated with palliative chemotherapy. Cancer 117(16):3750–3757

    Google Scholar 

  40. Chan KC, Chan AT, Leung SF, Pang JC, Wang AY, Tong JH, To KF, Chan LY, Tam LL, Chung NY, Zhang J, Lo KW, Huang DP, Lo YM (2005) Investigation into the origin and tumoral mass correlation of plasma Epstein-Barr virus DNA in nasopharyngeal carcinoma. Clin Chem 51:2192–2195

    Google Scholar 

  41. Gandhi MK, Lambley E, Burrows J, Dua U, Elliott S, Shaw PJ, Prince HM, Wolf M, Clarke K, Underhill C, Mills T, Mollee P, Gill D, Marlton P, Seymour JF, Khanna R (2006) Plasma Epstein-Barr virus (EBV) DNA is a biomarker for EBV-positive Hodgkin’s lymphoma. Clin Cancer Res 12(2):460–464

    Google Scholar 

  42. Lin JC, Wang WY, Chen KY, Wei YH, Liang WM, Jan JS, Jiang RS (2004) Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med 350(24):2461–2470

    Google Scholar 

  43. Lo YM, Chan AT, Chan LY, Leung SF, Lam CW, Huang DP, Johnson PJ (2000) Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA. Cancer Res 60:6878–6881

    Google Scholar 

  44. Lo YM, Leung SF, Chan LY, Chan AT, Lo KW, Johnson PJ, Huang DP (2000) Kinetics of plasma Epstein-Barr virus DNA during radiation therapy for nasopharyngeal carcinoma. Cancer Res 60:2351–2355

    Google Scholar 

  45. Spacek M, Hubacek P, Markova J, Zajac M, Vernerova Z, Kamaradova K, Stuchly J, Kozak T (2011) Plasma EBV-DNA monitoring in Epstein-Barr virus-positive Hodgkin lymphoma patients. APMIS 119(1):10–16

    Google Scholar 

  46. Yang HJ, Liu VW, Tsang PC, Yip AM, Tam KF, Wong LC, Ng TY, Ngan HY (2004) Quantification of human papillomavirus DNA in the plasma of patients with cervical cancer. Int J Gynecol Cancer 14(5):903–910

    Google Scholar 

  47. To EW, Chan KC, Leung SF, Chan LY, To KF, Chan AT, Johnson PJ, Lo YM (2003) Rapid clearance of plasma Epstein-Barr virus DNA after surgical treatment of nasopharyngeal carcinoma. Clin Cancer Res 9(9):3254–3259

    Google Scholar 

  48. Chan AT, Ma BB, Lo YM, Leung SF, Kwan WH, Hui EP, Mok TS, Kam M, Chan LS, Chiu SK, Yu KH, Cheung KY, Lai K, Lai M, Mo F, Yeo W, King A, Johnson PJ, Teo PM, Zee B (2004) Phase II study of neoadjuvant carboplatin and paclitaxel followed by radiotherapy and concurrent cisplatin in patients with locoregionally advanced nasopharyngeal carcinoma: therapeutic monitoring with plasma Epstein-Barr virus DNA. J Clin Oncol 22(15):3053–3060

    Google Scholar 

  49. Lo YM, Chan LY, Lo KW, Leung SF, Zhang J, Chan AT, Lee JC, Hjelm NM, Johnson PJ, Huang DP (1999) Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res 59:1188–1191

    Google Scholar 

  50. Ngan RK, Yip TT, Cheng WW, Chan JK, Cho WC, Ma VW, Wan KK, Au SK, Law CK, Lau WH (2002) Circulating Epstein-Barr virus DNA in serum of patients with lymphoepithelioma-like carcinoma of the lung: a potential surrogate marker for monitoring disease. Clin Cancer Res 8(4):986–994

    Google Scholar 

  51. Kamat AA, Bischoff FZ, Dang D, Baldwin MF, Han LY, Lin YG, Merritt WM, Landen CN Jr, Lu C, Gershenson DM, Simpson JL, Sood AK (2006) Circulating cell-free DNA: a novel biomarker for response to therapy in ovarian carcinoma. Cancer Biol Ther 5:1369–1374

    Google Scholar 

  52. Rago C, Huso DL, Diehl F, Karim B, Liu G, Papadopoulos N, Samuels Y, Velculescu VE, Vogelstein B, Kinzler KW, Diaz LA Jr (2007) Serial assessment of human tumor burdens in mice by the analysis of circulating DNA. Cancer Res 67:9364–9370

    Google Scholar 

  53. Thierry AR, Mouliere F, Gongora C, Ollier J, Robert B, Ychou M, Del Rio M, Molina F (2010) Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res 38(18):6159–6175

    Google Scholar 

  54. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650

    Google Scholar 

  55. Gautschi O, Bigosch C, Huegli B, Jermann M, Marx A, ChassÕ E, Ratschiller D, Weder W, Joerger M, Betticher DC, Stahel RA, Ziegler A (2004) Circulating deoxyribonucleic acid as prognostic marker in non-small-cell lung cancer patients undergoing chemotherapy. J Clin Oncol 22:4157–4164

    Google Scholar 

  56. Kumar S, Guleria R, Singh V, Bharti AC, Mohan A, Das BC (2010) Plasma DNA level in predicting therapeutic efficacy in advanced nonsmall cell lung cancer. Eur Respir J 36(4):885–892

    Google Scholar 

  57. Maebo A (1990) Plasma DNA level as a tumor marker in primary lung cancer. Nihon Kyobu Shikkan Gakkai Zasshi 28:1085–1091

    CAS  PubMed  Google Scholar 

  58. Zitt M, Müller HM, Rochel M, Schwendinger V, Zitt M, Goebel G, Devries A, Margreiter R, Oberwalder M, Zeillinger R, Ofner D (2008) Circulating cell-free DNA in plasma of locally advanced rectal cancer patients undergoing preoperative chemoradiation: a potential diagnostic tool for therapy monitoring. Dis Markers 25(3):159–165

    Google Scholar 

  59. Capizzi E, Gabusi E, Grigioni AD, De Iaco P, Rosati M, Zamagni C, Fiorentino M (2008) Quantification of free plasma DNA before and after chemotherapy in patients with advanced epithelial ovarian cancer. Diagn Mol Pathol 17(1):34–38

    Google Scholar 

  60. Kamat AA, Kim TJ, Landen CN Jr, Lu C, Han LY, Lin YG, Merritt WM, Thaker PH, Gershenson DM, Bischoff FZ, Heymach JV, Jaffe RB, Coleman RL, Sood AK (2007) Metronomic chemotherapy enhances the efficacy of antivascular therapy in ovarian cancer. Cancer Res 67(1):281–288

    Google Scholar 

  61. Feng G, Ye X, Fang F, Pu C, Huang H, Li G (2013) Quantification of plasma cell-free DNA in predicting therapeutic efficacy of sorafenib on metastatic clear cell renal cell carcinoma. Dis Markers 34(2):105–111

    Google Scholar 

  62. Deligezer U, Eralp Y, Akisik EE, Akisik EZ, Saip P, Topuz E, Dalay N (2008) Size distribution of circulating cell-free DNA in sera of breast cancer patients in the course of adjuvant chemotherapy. Clin Chem Lab Med 46(3):311–317

    Google Scholar 

  63. Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272

    Article  CAS  PubMed  Google Scholar 

  64. Ng EK, Tsui NB, Lam NY, Chiu RW, Yu SC, Wong SC, Lo ES, Rainer TH, Johnson PJ, Lo YM (2002) Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin Chem 48:1212–1217

    Google Scholar 

  65. Rumore PM, Steinman CR (1990) Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone. J Clin Invest 86:69–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Holdenrieder S, Stieber P, Bodenmueller H, Busch M, Fertig G, Fürst H, Schalhorn A, Schmeller N, Untch M, Seidel D (2001) Nucleosomes in serum of patients with benign and malignant diseases. Int J Cancer 95:114–120

    Google Scholar 

  67. Trejo-Becerril C, Perez-Cardenas E, Trevino-Cuevas H, Taja-Chayeb L, García-López P, Segura-Pacheco B, Chávez-Blanco A, Lizano-Soberon M, González-Fierro A, Mariscal I, Wegman-Ostrosky T, Dueñas-González A (2003) Circulating nucleosomes and response to chemotherapy: an in vitro, in vivo and clinical study on cervical cancer patients. Int J Cancer 104:663–668

    Google Scholar 

  68. Kuroi K, Tanaka C, Toi M (2001) Clinical significance of plasma nucleosomes levels in cancer patients. Int J Oncol 19:143–148

    Google Scholar 

  69. Holdenrieder S, Nagel D, Schalhorn A, Heinemann V, Wilkowski R, von Pawel J, Raith H, Feldmann K, Kremer AE, Müller S, Geiger S, Hamann GF, Seidel D, Stieber P (2008) Clinical relevance of circulating nucleosomes in cancer disease. Ann N Y Acad Sci 1137:180–189

    Google Scholar 

  70. Holdenrieder S, Stief J, Bergner A, Gamarra F, Mitlewski A, Nagel D, Huber RM, Stieber P (2004) Nucleosomes indicate the in vitro radiosensitivity of irradiated broncho-epithelial and lung cancer cells. Tumour Biol 25:321–326

    Google Scholar 

  71. Holdenrieder S, Stieber P, von Pawel J, Raith H, Nagel D, Feldmann K, Seidel D (2004) Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer. Clin Cancer Res 10:5981–5987

    Google Scholar 

  72. Holdenrieder S, Stieber P, von Pawel J, Raith H, Nagel D, Feldmann K, Seidel D (2006) Early and specific prediction of the therapeutic efficacy in lung cancer by nucleosomal DNA and cytokeratin 19 fragments. Ann N Y Acad Sci 1075:244–257

    Google Scholar 

  73. Kumar S, Guleria R, Singh V, Bharti AC, Mohan A, Das BC (2010) Plasma nucleosome levels might predict response to therapy in patients with advanced non-small-cell lung cancer. Clin Lung Cancer 11(1):36–44

    Google Scholar 

  74. Holdenrieder S, von Pawel J, Dankelmann E, Duell T, Faderl B, Markus A, Siakavara M, Wagner H, Feldmann K, Hoffmann H, Raith H, Nagel D, Stieber P (2009) Nucleosomes and CYFRA 21–1 indicate tumor response after one cycle of chemotherapy in recurrent non-small cell lung cancer. Lung Cancer 63:128–135

    Google Scholar 

  75. Holdenrieder S, von Pawel J, Dankelmann E, Duell T, Faderl B, Markus A, Siakavara M, Wagner H, Feldmann K, Hoffmann H, Raith H, Nagel D, Stieber P (2008) Nucleosomes, ProGRP, NSE, CYFRA 21–1 and CEA in the therapy monitoring of small-cell lung cancer during first-line chemotherapy. Clin Cancer Res 14:7813–7821

    Google Scholar 

  76. Holdenrieder S, Holubec L Jr, Topolcan O, Finek J, Stieber P (2005) Circulating nucleosomes and cytokeratin 19-fragments in patients with colorectal cancer during chemotherapy. Anticancer Res 25:1795–1802

    Google Scholar 

  77. Kremer A, Holdenrieder S, Stieber P, Wilkowski R, Nagel D, Seidel D (2006) Nucleosomes in colorectal cancer patients during radiochemotherapy. Tumour Biol 27:235–242

    Google Scholar 

  78. Kremer A, Wilkowski R, Holdenrieder S, Nagel D, Stieber P, Seidel D (2005) Nucleosomes in pancreatic cancer patients during radiochemotherapy. Tumour Biol 26:44–49

    Google Scholar 

  79. Wittwer C, Boeck S, Heinemann V, Haas M, Stieber P, Nagel D, Holdenrieder S (2013) Circulating nucleosomes and immunogenic cell death markers HMGB1, sRAGE and DNAse in patients with advanced pancreatic cancer undergoing chemotherapy. Int J Cancer 133:2619–2630

    Google Scholar 

  80. Stoetzer OJ, Fersching DM, Salat C, Steinkohl O, Gabka CJ, Hamann U, Braun M, Feller AM, Heinemann V, Siegele B, Nagel D, Holdenrieder S (2013) Prediction of response to neoadjuvant chemotherapy in breast cancer patients by circulating nucleosomes, DNAse activity, M30 and survivin. Cancer Lett 336:140–148

    Google Scholar 

  81. Fahmueller YN, Nagel D, Hoffmann RT, Tatsch K, Jakobs T, Stieber P, Holdenrieder S (2012) Predictive and prognostic value of circulating nucleosomes and serum biomarkers in patients with metastasized colorectal cancer undergoing Selective Internal Radiation Therapy. BMC Cancer 12:5

    Google Scholar 

  82. Kohles N, Nagel D, Jüngst D, Durner J, Stieber P, Holdenrieder S (2011) Relevance of circulating nucleosomes and oncological biomarkers for predicting response to transarterial chemoembolization therapy in liver cancer patients. BMC Cancer 11:202

    Google Scholar 

  83. Lichtenstein AV, Melkonyan HS, Tomei LD, Umansky SR (2001) Circulating nucleic acids and apoptosis. Ann N Y Acad Sci 945:239–249

    Google Scholar 

  84. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

    Google Scholar 

  85. Wang BG, Huang HY, Chen YC, Bristow RE, Kassauei K, Cheng CC, Roden R, Sokoll LJ, Chan DW, Shih IM (2003) Increased plasma DNA integrity in cancer patients. Cancer Res 63:3966–3968

    Google Scholar 

  86. Umetani N, Giuliano AE, Hiramatsu SH, Amersi F, Nakagawa T, Martino S, Hoon DS (2006) Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol 24:4270–4276

    Google Scholar 

  87. Umetani N, Kim J, Hiramatsu S, Reber HA, Hines OJ, Bilchik AJ, Hoon DS. (2006) Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem 52:1062–1069

    Google Scholar 

  88. Leszinski G, Lehner J, Gezer U, Holdenrieder S (2014) Elevated DNA integrity in colorectal cancer. In Vivo 28:287–292

    Google Scholar 

  89. Tomita H, Ichikawa D, Ikoma D, Sai S, Tani N, Ikoma H, Fujiwara H, Kikuchi S, Okamoto K, Ochiai T, Otsuji E (2007) Quantification of circulating plasma DNA fragments as tumor markers in patients with esophageal cancer. Anticancer Res 27:2737–2741

    Google Scholar 

  90. Hanley R, Rieger-Christ KM, Canes D, Emara NR, Shuber AP, Boynton KA, Libertino JA, Summerhayes IC (2006) DNA integrity assay: a plasma-based screening tool for the detection of prostate cancer. Clin Cancer Res 12(15):4569–4574

    Google Scholar 

  91. Jiang WW, Zahurak M, Goldenberg D, Milman Y, Park HL, Westra WH, Koch W, Sidransky D, Califano J (2006) Increased plasma DNA integrity index in head and neck cancer patients. Int J Cancer 119:2673–2676

    Google Scholar 

  92. Chan KC, Leung SF, Yeung SW, Chan AT, Lo YM (2008) Persistent aberrations in circulating DNA integrity after radiotherapy are associated with poor prognosis in nasopharyngeal carcinoma patients. Clin Cancer Res 14(13):4141–4145

    Google Scholar 

  93. Pinzani P, Salvianti F, Zaccara S, Massi D, De Giorgi V, Pazzagli M, Orlando C (2011) Circulating cell-free DNA in plasma of melanoma patients: qualitative and quantitative considerations. Clin Chim Acta 412(23–24):2141–2145

    Google Scholar 

  94. Gao YJ, He YJ, Yang ZL, Shao HY, Zuo Y, Bai Y, Chen H, Chen XC, Qin FX, Tan S, Wang J, Wang L, Zhang L (2010) Increased integrity of circulating cell-free DNA in plasma of patients with acute leukemia. Clin Chem Lab Med 48(11):1651–1656

    Google Scholar 

  95. Boddy JL, Gal S, Malone PR, Shaida N, Wainscoat JS, Harris AL (2006) The role of cell-free DNA size distribution in the management of prostate cancer. Oncol Res 16:35–41

    Google Scholar 

  96. Holdenrieder S, Burges A, Reich O, Spelsberg FW, Stieber P (2008) DNA integrity index in plasma and serum of patients with malignant and benign diseases. Ann N Y Acad Sci 1137:162–170

    Google Scholar 

  97. Schmidt B, Weickmann S, Witt C, Fleischhacker M (2008) Integrity of cell-free plasma DNA in patients with lung cancer and nonmalignant lung disease. Ann N Y Acad Sci 1137:207–213

    Google Scholar 

  98. Stötzer OJ, Lehner J, Fersching-Gierlich D, Nagel D, Holdenrieder S (2014) Diagnostic relevance of plasma DNA and DNA integrity for breast cancer. Tumour Biol 35(2):1183–1191

    Google Scholar 

  99. Ellinger J, Bastian PJ, Ellinger N, Kahl P, Perabo FG, Büttner R, Müller SC, von Ruecker A (2008) Apoptotic DNA fragments in serum of patients with muscle invasive bladder cancer: a prognostic entity. Cancer Lett 264(2):274–280

    Google Scholar 

  100. Ellinger J, Bastian PJ, Haan KI, Heukamp LC, Buettner R, Fimmers R, Mueller SC, von Ruecker A (2008) Noncancerous PTGS2 DNA fragments of apoptotic origin in sera of prostate cancer patients qualify as diagnostic and prognostic indicators. Int J Cancer 122(1):138–143

    Google Scholar 

  101. Lehner J, Stötzer OJ, Fersching D, Nagel D, Holdenrieder S (2013) Circulating plasma DNA and DNA integrity in breast cancer patients undergoing neoadjuvant chemotherapy. Clin Chim Acta 425:206–211

    Google Scholar 

  102. Schwarzenbach H, Müller V, Beeger C, Gottberg M, Stahmann N, Pantel K (2007) A critical evaluation of loss of heterozygosity detected in tumor tissues, blood serum and bone marrow plasma from patients with breast cancer. Breast Cancer Res 9(5):R66

    Google Scholar 

  103. Schwarzenbach H, Eichelser C, Kropidlowski J, Janni W, Rack B, Pantel K (2012) Loss of heterozygosity at tumor suppressor genes detectable on fractionated circulating cell-free tumor DNA as indicator of breast cancer progression. Clin Cancer Res 18(20):5719–5730

    Google Scholar 

  104. Wang Q, Larson PS, Schlechter BL, Zahid N, Finnemore E, de las Morenas A, Blanchard RA, Rosenberg CL (2003) Loss of heterozygosity in serial plasma DNA samples during follow-up of women with breast cancer. Int J Cancer 106(6):923–929

    Google Scholar 

  105. Rawnaq T, Schwarzenbach H, Schurr PG, Freise K, Brandl S, Izbicki JR, Kaifi JT (2011) Monitoring of loss of heterozygosity in serum microsatellite DNA among patients with gastrointestinal stromal tumors indicates tumor recurrence. J Surg Res 169(1):31–35

    Google Scholar 

  106. Schurr PG, Oikonomou D, Kaifi JT, Merkert P, Wolter S, Kleinhans H, Reichelt U, Mann O, Gawad KA, Strate T, Yekebas EF, Izbicki JR (2009) Clinical value of loss of heterozygosity in serum microsatellite DNA of patients with gastrointestinal stromal tumors. J Clin Gastroenterol 43(1):27–35

    Google Scholar 

  107. Taback B, O’Day SJ, Boasberg PD, Shu S, Fournier P, Elashoff R, Wang HJ, Hoon DS (2004) Circulating DNA microsatellites: molecular determinants of response to biochemotherapy in patients with metastatic melanoma. J Natl Cancer Inst 96(2):152–156

    Google Scholar 

  108. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Google Scholar 

  109. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    Article  CAS  PubMed  Google Scholar 

  110. Anker P, Mulcahy H, Stroun M (2003) Circulating nucleic acids in plasma and serum as a noninvasive investigation for cancer: time for large-scale clinical studies? Int J Cancer 103(2):149–152

    Article  CAS  PubMed  Google Scholar 

  111. Kimura H, Kasahara K, Shibata K, Sone T, Yoshimoto A, Kita T, Ichikawa Y, Waseda Y, Watanabe K, Shiarasaki H, Ishiura Y, Mizuguchi M, Nakatsumi Y, Kashii T, Kobayashi M, Kunitoh H, Tamura T, Nishio K, Fujimura M, Nakao S (2006) EGFR mutation of tumor and serum in gefitinib-treated patients with chemotherapy-naive non-small cell lung cancer. J Thorac Oncol 1(3):260–267

    Google Scholar 

  112. Kopreski MS, Benko FA, Kwee C, Leitzel KE, Eskander E, Lipton A, Gocke CD (1997) Detection of mutant K-ras DNA in plasma or serum of patients with colorectal cancer. Br J Cancer 76(10):1293–1299

    Google Scholar 

  113. Mouliere F, El Messaoudi S, Gongora C, Guedj AS, Robert B, Del Rio M, Molina F, Lamy PJ, Lopez-Crapez E, Mathonnet M, Ychou M, Pezet D, Thierry AR (2013) Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol 6(3):319–328

    Google Scholar 

  114. Taniguchi K, Uchida J, Nishino K, Kumagai T, Okuyama T, Okami J, Higashiyama M, Kodama K, Imamura F, Kato K (2011) Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res 17(24):7808–7815

    Google Scholar 

  115. Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M (1994) Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 86(4):774–779

    Google Scholar 

  116. Wang M, Block TM, Steel L, Brenner DE, Su YH (2004) Preferential isolation of fragmented DNA enhances the detection of circulating mutated k-ras DNA. Clin Chem 50(1):211–213

    Google Scholar 

  117. Chen Z, Feng J, Buzin CH CH, Liu Q, Weiss L, Kernstine K, Somlo G, Sommer SS (2009) Analysis of cancer mutation signatures in blood by a novel ultra-sensitive assay: monitoring of therapy or recurrence in non-metastatic breast cancer. PLoS One 4(9):e7220

    Google Scholar 

  118. Diehl F, Li M, He Y, Kinzler KW, Vogelstein B, Dressman D (2006) BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 3(7):551–559

    Google Scholar 

  119. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4(136):136ra68

    Google Scholar 

  120. Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, Atochin I, Link DR, Griffiths AD, Pallier K, Blons H, BouchÕ O, Landi B, Hutchison JB, Laurent-Puig P (2013) Multiplex picodroplet digital PCR to detect KRas mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 59(12):1722–1731

    Google Scholar 

  121. Kuang Y, Rogers A, Yeap BY, Wang L, Makrigiorgos M, Vetrand K, Thiede S, Distel RJ, Jðnne PA (2009) Noninvasive detection of EGFR T790M in gefitinib or erlotinib resistant non-small cell lung cancer. Clin Cancer Res 15(8):2630–2636

    Google Scholar 

  122. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139

    Google Scholar 

  123. Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J, Lorimer I, Zhang T, Liu N, Daneshmand M, Marrano P, da Cunha Santos G, Lagarde A, Richardson F, Seymour L, Whitehead M, Ding K, Pater J, Shepherd FA (2005) Erlotinib in lung cancer – molecular and clinical predictors of outcome. N Engl J Med 353(2):133–144

    Google Scholar 

  124. Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358(11):1160–1174

    Article  CAS  PubMed  Google Scholar 

  125. Petrelli F, Borgonovo K, Cabiddu M, Barni S (2012) Efficacy of EGFR tyrosine kinase inhibitors in patients with EGFR-mutated non-small-cell lung cancer: a meta-analysis of 13 randomized trials. Clin Lung Cancer 13(2):107–114

    Google Scholar 

  126. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892

    Google Scholar 

  127. Shaw AT, Kim DW, Nakagawa K, Seto T, Crinó L, Ahn MJ, De Pas T, Besse B, Solomon BJ, Blackhall F, Wu YL, Thomas M, O'Byrne KJ, Moro-Sibilot D, Camidge DR, Mok T, Hirsh V, Riely GJ, Iyer S, Tassell V, Polli A, Wilner KD, Jänne PA (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368(25):2385–2394

    Google Scholar 

  128. Daniotti M, Vallacchi V, Rivoltini L, Patuzzo R, Santinami M, Arienti F, Cutolo G, Pierotti MA, Parmiani G, Rodolfo M (2007) Detection of mutated BRAFV600E variant in circulating DNA of stage III-IV melanoma patients. Int J Cancer 120(11):2439–2444

    Google Scholar 

  129. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O'Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363(9):809–819

    Google Scholar 

  130. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P, Dummer R, Trefzer U, Larkin JM, Utikal J, Dreno B, Nyakas M, Middleton MR, Becker JC, Casey M, Sherman LJ, Wu FS, Ouellet D, Martin AM, Patel K, Schadendorf D; METRIC Study Group (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367(2):107–114

    Google Scholar 

  131. Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, Rivera F, KocÃkova I, Ruff P, Błasińska-Morawiec M, Šmakal M, Canon JL, Rother M, Williams R, Rong A, Wiezorek J, Sidhu R, Patterson SD (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369(11):1023–1034

    Google Scholar 

  132. Heinemann V, Stintzing S, Kirchner T, Boeck S, Jung A (2009) Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat Rev 35(3):262–271

    Google Scholar 

  133. Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D'Haens G, Pintér T, Lim R, Bodoky G, Roh JK, Folprecht G, Ruff P, Stroh C, Tejpar S, Schlichting M, Nippgen J, Rougier P (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360(14):1408–1417

    Google Scholar 

  134. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, Inserra E, Diederichs S, Iafrate AJ, Bell DW, Digumarthy S, Muzikansky A, Irimia D, Settleman J, Tompkins RG, Lynch TJ, Toner M, Haber DA (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359(4):366–377

    Google Scholar 

  135. Heitzer E, Auer M, Hoffmann EM, Pichler M, Gasch C, Ulz P, Lax S, Waldispuehl-Geigl J, Mauermann O, Mohan S, Pristauz G, Lackner C, H­fler G, Eisner F, Petru E, Sill H, Samonigg H, Pantel K, Riethdorf S, Bauernhofer T, Geigl JB, Speicher MR (2013) Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer 133(2):346–356

    Google Scholar 

  136. Mostert B, Jiang Y, Sieuwerts AM, Wang H, Bolt-de Vries J, Biermann K, Kraan J, Lalmahomed Z, van Galen A, de Weerd V, van der Spoel P, RamÚrez-Moreno R, Verhoef C, Ijzermans JN, Wang Y, Gratama JW, Foekens JA, Sleijfer S, Martens JW (2013) KRAS and BRAF mutation status in circulating colorectal tumor cells and their correlation with primary and metastatic tumor tissue. Int J Cancer 133(1):130–141

    Google Scholar 

  137. Board RE, Wardley AM, Dixon JM, Armstrong AC, Howell S, Renshaw L, Donald E, Greystoke A, Ranson M, Hughes A, Dive C (2006) Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res Treat 120(2):461–467

    Google Scholar 

  138. Higgins MJ, Jelovac D, Barnathan E, Blair B, Slater S, Powers P, Zorzi J, Jeter SC, Oliver GR, Fetting J, Emens L, Riley C, Stearns V, Diehl F, Angenendt P, Huang P, Cope L, Argani P, Murphy KM, Bachman KE, Greshock J, Wolff AC, Park BH (2012) Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res 18(12):3462–3469

    Google Scholar 

  139. Yung TK, Chan KC, Mok TS, Tong J, To KF, Lo YM (2009) Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res 15(6):2076–2084

    Google Scholar 

  140. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N. Author information (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209

    Google Scholar 

  141. Yam I, Lam DC, Chan K, Chung-Man Ho J, Ip M, Lam WK, Chan TK, Chan V (2012) EGFR array: uses in the detection of plasma EGFR mutations in non-small cell lung cancer patients. J Thorac Oncol 7(7):1131–1140

    Google Scholar 

  142. Bai H, Wang Z, Chen K, Zhao J, Lee JJ, Wang S, Zhou Q, Zhuo M, Mao L, An T, Duan J, Yang L, Wu M, Liang Z, Wang Y, Kang X, Wang J (2012) Influence of chemotherapy on EGFR mutation status among patients with non-small-cell lung cancer. J Clin Oncol 30(25):3077–3083

    Google Scholar 

  143. Nakamura T, Sueoka-Aragane N, Iwanaga K, Sato A, Komiya K, Abe T, Ureshino N, Hayashi S, Hosomi T, Hirai M, Sueoka E, Kimura S (2011) A noninvasive system for monitoring resistance to epidermal growth factor receptor tyrosine kinase inhibitors with plasma DNA. J Thorac Oncol 6(10):1639–1648

    Google Scholar 

  144. Sakai K, Horiike A, Irwin DL, Kudo K, Fujita Y, Tanimoto A, Sakatani T, Saito R, Kaburaki K, Yanagitani N, Ohyanagi F, Nishio M, Nishio K (2013) Detection of epidermal growth factor receptor T790M mutation in plasma DNA from patients refractory to epidermal growth factor receptor tyrosine kinase inhibitor. Cancer Sci 104(9):1198–1204

    Google Scholar 

  145. Shinozaki M, O’Day SJ, Kitago M, Amersi F, Kuo C, Kim J, Wang HJ, Hoon DS (2007) Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. Clin Cancer Res 13(7):2068–2074

    Google Scholar 

  146. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, Bencardino K, Cercek A, Chen CT, Veronese S, Zanon C, Sartore-Bianchi A, Gambacorta M, Gallicchio M, Vakiani E, Boscaro V, Medico E, Weiser M, Siena S, Di Nicolantonio F, Solit D, Bardelli A (2011) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486(7404):532–536

    Google Scholar 

  147. Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, Kinzler KW, Oliner KS, Vogelstein B (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404):537–540

    Google Scholar 

  148. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112

    Google Scholar 

  149. Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, Antipova A, Lee C, McKernan K, De La Vega FM, Kinzler KW, Vogelstein B, Diaz LA Jr, Velculescu VE (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2(20):20ra14

    Google Scholar 

  150. Shaw JA, Page K, Blighe K, Hava N, Guttery D, Ward B, Brown J, Ruangpratheep C, Stebbing J, Payne R, Palmieri C, Cleator S, Walker RA, Coombes RC (2012) Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res 22(2):220–231

    Google Scholar 

  151. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  PubMed  Google Scholar 

  152. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068

    Google Scholar 

  153. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  CAS  PubMed  Google Scholar 

  154. Füllgrabe J, Kavanagh E, Joseph B (2011) Histone onco-modifications. Oncogene 30(31):3391–3403

    Article  PubMed  Google Scholar 

  155. deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Steiger KV, Grützmann R, Pilarsky C, Habermann JK, Fleshner PR, Oubre BM, Day R, Sledziewski AZ, Lofton-Day C (2009) Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 55(7):1337–1346

    Google Scholar 

  156. Grützmann R, Molnar B, Pilarsky C, Habermann JK, Schlag PM, Saeger HD, Miehlke S, Stolz T, Model F, Roblick UJ, Bruch HP, Koch R, Liebenberg V, Devos T, Song X, Day RH, Sledziewski AZ, Lofton-Day C (2008) Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 3:e3759

    Google Scholar 

  157. Thon N, Kreth S, Kreth FW (2013) Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. Onco Targets Ther 6:1363–1372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Kneip C, Schmidt B, Seegebarth A, Weickmann S, Fleischhacker M, Liebenberg V, Field JK, Dietrich D (2011) SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol 6:1632–1638

    Google Scholar 

  159. Ponomaryova AA, Rykova EY, Cherdyntseva NV, Skvortsova TE, Dobrodeev AY, Zav'yalov AA, Bryzgalov LO, Tuzikov SA, Vlassov VV, Laktionov PP (2013) Potentialities of aberrantly methylated circulating DNA for diagnostics and post-treatment follow-up of lung cancer patients. Lung Cancer 81(3):397–403

    Google Scholar 

  160. Avraham A, Uhlmann R, Shperber A, Birnbaum M, Sandbank J, Sella A, Sukumar S, Evron E (2012) Serum DNA methylation for monitoring response to neoadjuvant chemotherapy in breast cancer patients. Int J Cancer 131(7):E1166–E1172

    Google Scholar 

  161. Schmidt B, Beyer J, Bork I et al. (2013) Quantification of cell-free methylated SHOX2 (mSHOX) DNA from plasma is a biomarker for therapy monitoring in lung cancer patients. CNAPS 2013; 35 (Abstract)

    Google Scholar 

  162. Campan M, Moffitt M, Houshdaran S, Shen H, Widschwendter M, Daxenbichler G, Long T, Marth C, Laird-Offringa IA, Press MF, Dubeau L, Siegmund KD, Wu AH, Groshen S, Chandavarkar U, Roman LD, Berchuck A, Pearce CL, Laird PW (2011) Genome-scale screen for DNA methylation-based detection markers for ovarian cancer. PLoS One 6(12):e28141

    Google Scholar 

  163. Bondurant AE, Huang Z, Whitaker RS, Simel LR, Berchuck A, Murphy SK (2011) Quantitative detection of RASSF1A DNA promoter methylation in tumors and serum of patients with serous epithelial ovarian cancer. Gynecol Oncol 123(3):581–587

    Google Scholar 

  164. Zurita M, Lara PC, del Moral R, Torres B, Linares-Fernández JL, Arrabal SR, Martínez-Galán J, Oliver FJ, Ruiz de Almodóvar JM (2010) Hypermethylated 14-3-3-sigma and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis. BMC Cancer 10:217

    Google Scholar 

  165. Nakayama G, Kodera Y, Ohashi N, Koike M, Fujiwara M, Nakao A (2011) p16INK4a methylation in serum as a follow-up marker for recurrence of colorectal cancer. Anticancer Res 31(5):1643–1646

    Google Scholar 

  166. Nishio M, Sakakura C, Nagata T, Komiyama S, Miyashita A, Hamada T, Kuryu Y, Ikoma H, Kubota T, Kimura A, Nakanishi M, Ichikawa D, Fujiwara H, Okamoto K, Ochiai T, Kokuba Y, Sonoyama T, Ida H, Ito K, Chiba T, Ito Y, Otsuji E (2010) RUNX3 promoter methylation in colorectal cancer: its relationship with microsatellite instability and its suitability as a novel serum tumor marker. Anticancer Res 30(7):2673–2682

    Google Scholar 

  167. Fiegl H, Millinger S, Mueller-Holzner E, Marth C, Ensinger C, Berger A, Klocker H, Goebel G, Widschwendter M (2005) Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res 65(4):1141–1145

    Google Scholar 

  168. Deligezer U, Akisik EE, Erten N, Dalay N (2008) Sequence-specific histone methylation is detectable on circulating nucleosomes in plasma. Clin Chem 54(7):1125–1131

    Google Scholar 

  169. Leszinski G, Gezer U, Siegele B, Stoetzer OJ, Holdenrieder S (2012) Relevance of histone markers H3K9me3 and H4K20me3 in cancer. Anticancer Res 32:2199–2205

    CAS  PubMed  Google Scholar 

  170. Gezer U, Üstek D, Yörüker EE, Cakiris A, Abaci N, Leszinski G, Dalay N, Holdenrieder S (2013) Characterization of H3K9me3 and H4K20me3-associated circulating nucleosomal DNA by high-throughput sequencing in colorectal cancer. Tumor Biol 34:329–336

    Google Scholar 

  171. Kopreski MS, Benko FA, Kwak LW, Gocke CD (1999) Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res 5:1961–1965

    Google Scholar 

  172. Silva JM, Dominguez G, Silva J, Garcia JM, Sanchez A, Rodriguez O, Provencio M, Espaþa P, Bonilla F (2001) Detection of epithelial messenger RNA in the plasma of breast cancer patients is associated with poor prognosis tumor characteristics. Clin Cancer Res 7(9):2821–2825

    Google Scholar 

  173. Silva JM, Rodriguez R, Garcia JM, Muñoz C, Silva J, Dominguez G, Provencio M, España P, Bonilla F (2002) Detection of epithelial tumour RNA in the plasma of colon cancer patients is associated with advanced stages and circulating tumour cells. Gut 50(4):530–534

    Google Scholar 

  174. Wong SC, Lo SF, Cheung MT, Ng KO, Tse CW, Lai BS, Lee KC, Lo YM (2004) Quantification of plasma beta-catenin mRNA in colorectal cancer and adenoma patients. Clin Cancer Res 10(5):1613–1617

    Google Scholar 

  175. Stein U, Burock S, Herrmann P, Wendler I, Niederstrasser M, Wernecke KD, Schlag PM (2011) Diagnostic and prognostic value of metastasis inducer S100A4 transcripts in plasma of colon, rectal, and gastric cancer patients. J Mol Diagn 13:189–198

    Google Scholar 

  176. Hoon DS, Wang Y, Dale PS, Conrad AJ, Schmid P, Garrison D, Kuo C, Foshag LJ, Nizze AJ, Morton DL (1995) Detection of occult melanoma cells in blood with a multiple-marker polymerase chain reaction assay. J Clin Oncol 13(8):2109–2116

    Google Scholar 

  177. Zander T, Hofmann A, Staratschek-Jox A, Classen S, Debey-Pascher S, Maisel D, Ansén S, Hahn M, Beyer M, Thomas RK, Gathof B, Mauch C, Delank KS, Engel-Riedel W, Wichmann HE, Stoelben E, Schultze JL, Wolf J (2011) Blood-based gene expression signatures in non-small cell lung cancer. Clin Cancer Res 17:3360–3367

    Google Scholar 

  178. Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, Loguidice L, Soto H, Garrett M, Zhu LD, Sivaraman S, Chen C, Wong ET, Carter BS, Hochberg FH, Breakefield XO, Skog J (2013) BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2:e109

    Google Scholar 

  179. Patel K, Whelan PJ, Prescott S, Brownhill SC, Johnston CF, Selby PJ, Burchill SA (2004) The use of real-time reverse transcription-PCR for prostate-specific antigen mRNA to discriminate between blood samples from healthy volunteers and from patients with metastatic prostate cancer. Clin Cancer Res 10:7511–7519

    Google Scholar 

  180. Fugazzola L, Mihalich A, Persani L, Cerutti N, Reina M, Bonomi M, Ponti E, Mannavola D, Giammona E, Vannucchi G, di Blasio AM, Beck-Peccoz P (2002) Highly sensitive serum thyroglobulin and circulating thyroglobulin mRNA evaluations in the management of patients with differentiated thyroid cancer in apparent remission. J Clin Endocrinol Metab 87:3201–3208

    Google Scholar 

  181. Gnant M, Harbeck N, Thomssen C (2011) St. Gallen 2011: Summary of the consensus discussion. Breast Care (Basel) 6:136–141

    Google Scholar 

  182. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874

    Article  CAS  PubMed  Google Scholar 

  183. Bartels CL, Tsongalis GJ (2009) MicroRNAs: novel biomarkers for human cancer. Clin Chem 55(4):623–631

    Article  CAS  PubMed  Google Scholar 

  184. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M (2012) microRNAs in cancer management. Lancet Oncol 13(6):e249–e258

    Google Scholar 

  185. Melo SA, Esteller M (2011) Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 585(13):2087–2099

    Article  CAS  PubMed  Google Scholar 

  186. Suzuki H, Maruyama R, Yamamoto E, Kai M (2013) Epigenetic alteration and microRNA dysregulation in cancer. Front Genet 4:258

    Google Scholar 

  187. Aushev VN, Zborovskaya IB, Laktionov KK, Girard N, Cros MP, Herceg Z, Krutovskikh V (2013) Comparisons of microRNA patterns in plasma before and after tumor removal reveal new biomarkers of lung squamous cell carcinoma. PLoS One 8(10):e78649

    Google Scholar 

  188. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21

    Article  CAS  PubMed  Google Scholar 

  189. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Google Scholar 

  190. Mostert B, Sieuwerts AM, Martens JW, Sleijfer S (2011) Diagnostic applications of cell-free and circulating tumor cell-associated miRNAs in cancer patients. Expert Rev Mol Diagn 11(3):259–275

    Google Scholar 

  191. Spizzo R, Nicoloso MS, Croce M, Calin GA (2009) SnapShot: microRNAs in cancer. Cell 137(3):586–586

    Google Scholar 

  192. Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, Musolino C (2012) Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer. Int J Oncol 41(6):1897–1912

    Google Scholar 

  193. Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DS (2011) Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57(1):84–91

    Google Scholar 

  194. Hauser S, Wulfken LM, Holdenrieder S, Moritz R, Ohlmann CH, Jung V, Becker F, Herrmann E, Walgenbach-Brünagel G, von Ruecker A, Müller SC, Ellinger J (2012) Analysis of serum microRNAs (miR-26a-2*, miR-191, miR-337-3p and miR-378) as potential biomarkers in renal cell carcinoma. Cancer Epidemiol 36:391–394

    Google Scholar 

  195. Scheffer AR, Holdenrieder S, Kristiansen G, von Ruecker A, Müller SC, Ellinger J (2012) Circulating microRNAs in serum: novel biomarkers for patients with bladder cancer? World J Urol 32(2):353–358. doi:10.1007/s00345-012-1010-2

  196. Wulfken L, Moritz R, Ohlmann C, Holdenrieder S, Jung V, Becker F, Herrmann E, Walgenbach-Brünagel G, von Ruecker A, Müller SC, Ellinger J (2011) MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One 6(9):e25787

    Google Scholar 

  197. Murray MJ, Halsall DJ, Hook CE, Williams DM, Nicholson JC, Coleman N (2011) Identification of microRNAs From the miR-371 ~ 373 and miR-302 clusters as potential serum biomarkers of malignant germ cell tumors. Am J Clin Pathol 135(1):119–125

    Google Scholar 

  198. Ohyashiki K, Umezu T, Yoshizawa S, Ito Y, Ohyashiki M, Kawashima H, Tanaka M, Kuroda M, Ohyashiki JH (2011) Clinical impact of down-regulated plasma miR-92a levels in non-Hodgkin’s lymphoma. PLoS One 6(2):e16408

    Google Scholar 

  199. Summerer I, Niyazi M, Unger K, Pitea A, Zangen V, Hess J, Atkinson MJ, Belka C, Moertl S, Zitzelsberger H (2013) Changes in circulating microRNAs after radiochemotherapy in head and neck cancer patients. Radiat Oncol 8(1):296

    Google Scholar 

  200. Friedman EB, Shang S, de Miera EV, Fog JU, Teilum MW, Ma MW, Berman RS, Shapiro RL, Pavlick AC, Hernando E, Baker A, Shao Y, Osman I (2012) Serum microRNAs as biomarkers for recurrence in melanoma. J Transl Med 10:155

    Google Scholar 

  201. Kuhlmann JD, Baraniskin A, Hahn SA, Mosel F, Bredemeier M, Wimberger P, Kimmig R, Kasimir-Bauer S (2014) Circulating u2 small nuclear RNA fragments as a novel diagnostic tool for patients with epithelial ovarian cancer. Clin Chem 60(1):206–213

    Google Scholar 

  202. Arita T, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Shoda K, Kawaguchi T, Hirajima S, Nagata H, Kubota T, Fujiwara H, Okamoto K, Otsuji E (2013) Circulating long non-coding RNAs in plasma of patients with gastric cancer. Anticancer Res 33(8):3185–3193

    Google Scholar 

  203. Ecker JR, Bickmore WA, Barroso I, Pritchard JK, Gilad Y, Segal E (2012) Genomics: ENCODE explained. Nature 489(7414):52–55

    Google Scholar 

  204. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74

    Google Scholar 

  205. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C, Mu XJ, Khurana E, Rozowsky J, Alexander R, Min R, Alves P, Abyzov A, Addleman N, Bhardwaj N, Boyle AP, Cayting P, Charos A, Chen DZ, Cheng Y, Clarke D, Eastman C, Euskirchen G, Frietze S, Fu Y, Gertz J, Grubert F, Harmanci A, Jain P, Kasowski M, Lacroute P, Leng J, Lian J, Monahan H, O'Geen H, Ouyang Z, Partridge EC, Patacsil D, Pauli F, Raha D, Ramirez L, Reddy TE, Reed B, Shi M, Slifer T, Wang J, Wu L, Yang X, Yip KY, Zilberman-Schapira G, Batzoglou S, Sidow A, Farnham PJ, Myers RM, Weissman SM, Snyder M (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489(7414):91–100

    Google Scholar 

  206. Maher B (2012) ENCODE: the human encyclopaedia. Nature 489(7414):46–48

    Article  PubMed  Google Scholar 

  207. Sanyal A, Lajoie BR, Jain G, Dekker J (2012) The long-range interaction landscape of gene promoters. Nature 489(7414):109–113

    Google Scholar 

  208. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82

    Google Scholar 

  209. Chang CP, Chia RH, Wu TL, Tsao KC, Sun CF, Wu JT (2003) Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin Chim Acta 327:95–101

    Google Scholar 

  210. Chiu TW, Young R, Chan LY, Burd A, Lo DY (2006) Plasma cell-free DNA as an indicator of severity of injury in burn patients. Clin Chem Lab Med 44:13–17

    Google Scholar 

  211. Geiger S, Holdenrieder S, Stieber P, Hamann GF, Bruening R, Ma J, Nagel D, Seidel D (2006) Nucleosomes in serum of patients with early cerebral stroke. Cerebrovasc Dis 21:32–37

    Google Scholar 

  212. Geiger S, Holdenrieder S, Stieber P, Hamann GF, Bruening R, Ma J, Nagel D, Seidel D (2007) Nucleosomes as a new prognostic marker in early cerebral stroke. J Neurol 254:617–623

    Google Scholar 

  213. Lam NY, Rainer TH, Chan LY, Joynt GM, Lo YM (2003) Time course of early and late changes in plasma DNA in trauma patients. Clin Chem 49:1286–1291

    Google Scholar 

  214. Lam NY, Rainer TH, Wong LK, Lam W, Lo YM (2006) Plasma DNA as a prognostic marker for stroke patients with negative neuroimaging within the first 24 h of symptom onset. Resuscitation 68:71–78

    Google Scholar 

  215. Lo YM, Rainer TH, Chan LY, Hjelm NM, Cocks RA (2000) Plasma DNA as a prognostic marker in trauma patients. Clin Chem 46:319–323

    Google Scholar 

  216. Rainer TH, Wong LK, Lam W, Yuen E, Lam NY, Metreweli C, Lo YM (2003) Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem 49:562–569

    Google Scholar 

  217. Rainer TH, Lam NY, Man CY, Chiu RW, Woo KS, Lo YM (2006) Plasma beta-globin DNA as a prognostic marker in chest pain patients. Clin Chim Acta 368:110–113

    Google Scholar 

  218. Margraf S, Lögters T, Reipen J et al (2008) Neutrophil-derived circulating free DNA (cf-DNAA/NETs), a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis. Shock 30:352–358

    Google Scholar 

  219. Martins GA, Kawamura MT, Carvalho Mda G (2000) Detection of DNA in the plasma of septic patients. Ann N Y Acad Sci 906:134–140

    Article  CAS  PubMed  Google Scholar 

  220. Rhodes A, Wort SJ, Thomas H, Collinson P, Bennett ED (2006) Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care 10:R60

    Google Scholar 

  221. European Association of the Study of the Liver (2012) 2011 European Association of the Study of the Liver hepatitis C virus clinical practice guidelines. Liver Int 32(Suppl 1):2–8

    Google Scholar 

  222. Thompson MA, Aberg JA, Cahn P, Montaner JS, Rizzardini G, Telenti A, Gatell JM, Günthard HF, Hammer SM, Hirsch MS, Jacobsen DM, Reiss P, Richman DD, Volberding PA, Yeni P, Schooley RT; International AIDS Society-USA (2010) International AIDS Society-USA. Antiretroviral treatment of adult HIV infection: 2010 recommendations of the International AIDS Society-USA panel. JAMA 304(3):321–333

    Google Scholar 

  223. Holdenrieder S, Eichhorn P, Beuers U, Samtleben W, Schoenermarck U, Zachoval R, Nagel D, Stieber P (2006) Nucleosomal DNA fragments in autoimmune diseases. Ann N Y Acad Sci 1075:318–327

    Google Scholar 

  224. Koutouzov S, Jeronimo AL, Campos H, Amoura Z (2004) Nucleosomes in the pathogenesis of systemic lupus erythematosus. Rheum Dis Clin North Am 30:529–558

    Google Scholar 

  225. Simon JA, Cabiedes J, Ortiz E, Alcocer-Varela J, SÃnchez-Guerrero J (2004) Anti-nucleosome antibodies in patients with systemic lupus erythematosus of recent onset. Potential utility as a diagnostic tool and disease activity marker. Rheumatology 43:220–224

    Google Scholar 

  226. Zeerleder S, Zwart B, Wuillemin WA, Aarden LA, Groeneveld AB, Caliezi C, van Nieuwenhuijze AE, van Mierlo GJ, Eerenberg AJ, Lämmle B, Hack CE (2003) Elevated nucleosome levels in systemic inflammation and sepsis. Crit Care Med 31:1947–1951

    Google Scholar 

  227. Gahan PB (2012) Biology of circulating nucleic acids and possible roles in diagnosis and treatment in diabetes and cancer. Infect Disord Drug Targets 12(5):360–370

    Article  CAS  PubMed  Google Scholar 

  228. Gadi VK, Nelson JL, Boespflug ND (2006) Soluble donor DNA concentrations in recipient serum correlate with pancreas-kidney rejection. Clin Chem 52:379–382

    Article  CAS  PubMed  Google Scholar 

  229. Grill S, Rusterholz C, Zanetti-Dällenbach R, Tercanli S, Holzgreve W, Hahn S, Lapaire O (2009) Potential markers of preeclampsia–a review. Reprod Biol Endocrinol 7:70

    Google Scholar 

  230. Hahn S, Rusterholz C, Hösli I, Lapaire O (2011) Cell-free nucleic acids as potential markers for preeclampsia. Placenta 32(Suppl):S17–S20

    Google Scholar 

  231. Lo YM, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, Zheng YW, Leung TY, Lau TK, Cantor CR, Chiu RW (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Me 2(61):61ra91

    Google Scholar 

  232. Lo YM, Chiu RW (2012) Genomic analysis of fetal nucleic acids in maternal blood. Annu Rev Genomics Hum Genet 13:285–306

    Article  CAS  PubMed  Google Scholar 

  233. Atamaniuk J, Vidotto C, Tschan H, Bachl N, Stuhlmeier KM, Müller MM (2004) Increased concentrations of cell-free plasma DNA after exhaustive exercise. Clin Chem 50:1668–1670

    Google Scholar 

  234. Beiter T, Fragasso A, Hudemann J, Niess AM, Simon P (2011) Short-term treadmill running as a model for studying cell-free DNA kinetics in vivo. Clin Chem 57(4):633–636

    Google Scholar 

Download references

Conflict of Interest Statement

The author declares to have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Holdenrieder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Holdenrieder, S. (2015). CNAPS in Therapy Monitoring. In: Gahan, P. (eds) Circulating Nucleic Acids in Early Diagnosis, Prognosis and Treatment Monitoring. Advances in Predictive, Preventive and Personalised Medicine, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9168-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9168-7_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9167-0

  • Online ISBN: 978-94-017-9168-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics