Skip to main content

The Cancer Cell-Kill Paradigm and Beyond

  • Chapter
  • First Online:
The Conquest of Cancer
  • 851 Accesses

Abstract

According to NCI, “Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other tissues” [318]. In fact, most definitions use “uncontrolled” proliferation or growth at their core. More generic terms include tumors and neoplasms, though they can be benign, pre-malignant, or malignant. Implicit in the terms tumor (abnormal mass) and neoplasm (new growth) is the notion that these processes, particularly in their malignant variety, like invading bacteria, are inherently different from the host and must be thoroughly eradicated in order to prevent metastases and death. The application of the infectious disease model to cancer steered cancer research, diagnosis, treatment, and outcome assessment strategies towards both surgical excision of early-stage disease and the cancer cell-killing paradigm to eradicate advanced cancer, which is the focus of this chapter. From this basis, two major practical corollaries followed. The first is that cancer research has been oriented towards the search for therapeutically exploitable differences between cancer and normal cells, guided by successive hypotheses ranging from excessive cancer cell proliferation [319], a misconceived generalization that drove drug use for decades, to tumor-specific antigens targetable for therapy [320], an illusion not yet abandoned. As decried in a recent article, “It could be argued that medical treatment of cancer for most of the past century was like trying to fix an automobile without any knowledge of the internal combustion engines or, for that matter, even the ability to look under the hood” [321]. The second corollary is the concept of “cytotoxicity” (e.g., cell killing) of rapidly dividing cells introduced to describe the quintessential property that drugs must exhibit in order to be successful in the treatment of disseminated cancer. However, how these drugs were to kill cancer cells preferentially while sparing normal cells was never adequately explored nor fully explained. The notion of cell-killing as the cornerstone of cancer treatment became untenable when the carcinogenic process was shown to involve oncogenes that promote cell growth, mutated tumor suppressor genes that fail to counteract cancer-promoting oncogenes, defective DNA repair genes that enable replication and propagation of unstable genomes, microRNA that control the expression of most human genes, or defective cell death pathways that confer a survival advantage to cancer cells. From this flawed concept about cancer treatment, an entire lexicon emerged in attempts to explain empirical clinical observations. For example, the tendency of some tumors to outgrow adjacent normal tissues, a phenomenon that can be slowed and sometimes stopped by anti-cancer drugs, suggested a pivotal role for the cell cycle in tumor growth and anti-cancer drug activity. Thus, cancer drugs were classified as cell cycle dependent if they acted upon one of the phases of the cell cycle, and cell cycle independent if their anti-tumor activity was independent of the cell cycle. The former, in turn, were classified as S-specific (drugs such as the antimetabolites and anti-purines that inhibit DNA synthesis), M-phase dependent (drugs that arrest mitosis, such as Vinca alkaloids, Podophyllotoxins and Taxanes), or G1- and G2-phase dependent, such as Corticosteroids and Asparaginase, and Bleomycin and Topotecan, respectively. Cell-cycle independent drugs included the alkylating agents, such as Busulfan, Melphalan, and Chlorambucil that, by crosslinking guanine nucleobases on the DNA, prevent uncoiling and replication of the double helix, hence the cell division. Mechanism of action to a large degree determined the type of toxicity. Likewise, it was quickly discovered that anti-tumor activity was dose-dependent, but, given its non-specificity, dose escalation was limited by type and severity of toxicity resulting from drug effect on normal cells. Thus, in order to enhance anti-tumor activity while reducing toxicity, drugs with different mechanisms of action were combined and administered intermittently to reduce toxicity on normal tissues, especially the high turnover bone marrow, and enable time to recover from toxicity between treatment cycles. Perhaps the most successful example of this approach was the MOPP (Nitrogen mustard, Vincristine, Prednisone, and Procarbazine) chemotherapy regimen for Hodgkin’s disease that proved curative in most cases [322]. However, this early success was seldom replicated despite a myriad of clinical trials launched to test a variety of intermittent combination chemotherapy regimens in many types of cancers over the ensuing four decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A secondary treatment modality, such as hormones, radiation, etc., added to the primary treatment.

  2. 2.

    Human T-cell Leukemia Virus, the cause of a rare human leukemia.

  3. 3.

    Human Immunodeficiency Virus.

  4. 4.

    Tiny, flat, red, and round spots caused by intradermal bleeding.

  5. 5.

    The margin between therapeutic and toxic effects.

  6. 6.

    A quantitative statistical analysis of combined studies to uncover patterns not obvious in any single study.

  7. 7.

    Non-Small Cell Lung Cancer.

  8. 8.

    Small Cell Lung Cancer.

  9. 9.

    Center for International Blood and Marrow Transplant Research.

  10. 10.

    Human Leukocyte Antigen system.

  11. 11.

    Platelet derived growth factor receptor.

  12. 12.

    Approximately 150,000 Da vs. 500 Da for small-molecule inhibitors.

  13. 13.

    Gut cells that control the peristalsis of the small intestine.

  14. 14.

    Depressed bone marrow capacity to produce blood cells.

References

  1. Defining Cancer: National Cancer Institute. Web 23 Mar. 2013. http://www.cancer.gov/cancertopics/cancerlibrary/what-is-cancer

  2. Arber E. Cell proliferation as a major risk for cancer: a concept of doubtful validity. Cancer Res 1995;55:3759–3762.

    Google Scholar 

  3. Rosenberg SA. Identification of cancer antigens: impact on development of cancer immunotherapies. Cancer J Sci Am 2000;6(Suppl 3):S200–207.

    Google Scholar 

  4. Reddy A, Kaelin G Jr. Using cancer genetics to guide the selection of anticancer drug targets. Curr Opin Pharmacol 2002;2:366–373.

    CAS  PubMed  Google Scholar 

  5. DeVita VT, Moxley JH, Brace K, Frei E III. Intensive combination chemotherapy and X-irradiation in the treatment of Hodgkin’s disease. Proc Am Assoc Cancer Res 1965;6:15.

    Google Scholar 

  6. Burnett FM. The concept of immunological surveillance, Prog Exp Tumor Res 1970;13:1–27.

    Google Scholar 

  7. Immune Surveillance. Eds RT Smith and M Landry. Academic Press, New York – London, 1970.

    Google Scholar 

  8. Nathanson L. Spontaneous regression of malignant melanoma: a review of the literature on incidence, clinical features, and possible mechanisms. Natl Cancer Inst Monogr 1976;44:67–76.

    CAS  PubMed  Google Scholar 

  9. Mathé G, Amiel JL, Schwarzenberg L, et al. Active immunotherapy for acute lymphoblastic leukaemia. Lancet 1969;1:697–699.

    PubMed  Google Scholar 

  10. Grasser I. Interferon and cancer: therapeutic prospects. Rev Eur Etud Clin Biol 1970;15:23–7.

    Google Scholar 

  11. Amery WK, Spreafico F, Rojas AF, et al. Adjuvant treatment with levamisole in cancer: a review of experimental and clinical data. Cancer Treat Rev 1977;4:167–94.

    CAS  PubMed  Google Scholar 

  12. Rosenberg SA, Lotze MT, Muul LM, Et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985;313:1485–1492.

    CAS  PubMed  Google Scholar 

  13. FactSheet: Biological therapies for cancer. National Cancer institute. Web 14 Apr 2013. http://www.cancer.gov/cancertopics/factsheet/Therapy/biological

  14. Ibidem.

    Google Scholar 

  15. Ibidem.

    Google Scholar 

  16. Nagano Y, Kojima Y. Pouvoir immunisant du virus vaccinal inactivé par des rayons ultraviolets. C. R. Seances Soc. Biol. Fil (in French) 1954;148:1700–2.

    Google Scholar 

  17. Pieters T. Interferon and its first clinical trial: Looking behind the scenes. Med Hist 1993;37:270–295.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Cantell, K. The Story of Interferon: The Ups and Downs in the Life of a Scientist. River Edge, NJ. World scientific Publishing, 1998.

    Google Scholar 

  19. Nagata S, Taira H, Hall A, et al. Synthesis in E. coli of a polypeptide with human leukocyte interferon activity. Nature 1980;284:316–20.

    CAS  PubMed  Google Scholar 

  20. Tan YH, Hong WJ. Gene expression in mammalian cells. US patent 6207146, 2001.

    Google Scholar 

  21. Nelkin, D. Selling Science: How the press covers science and technology, New York, W.H. Freeman & Company, 1995.

    Google Scholar 

  22. Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature 2001;411:380–384.

    CAS  PubMed  Google Scholar 

  23. Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer Regression and Autoimmunity in Patients After Clonal Repopulation with Antitumor Lymphocytes. Science 2002;298:850–854.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Schwartz RN, Stover L, Dutcher J. Managing toxicities of high-dose Interleukin-2. Oncology 2002;16:11–20.

    PubMed  Google Scholar 

  25. Jager E, Knuth A. Clinical cancer vaccine trials. Curr Opin Immunol 2002;14:178–182.

    CAS  PubMed  Google Scholar 

  26. Vaccines, Blood & Biologics: April 29, 2010 Approval Letter – Provenge. FDA. Web 14 Apr. 2013. http://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/ucm210215.htm

  27. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. N Engl J Med 2010;363:411–22.

    CAS  PubMed  Google Scholar 

  28. Blattner W. Epidemiology of HTLV-1 and associated diseases. (Blattner W, ed.). In Human retrovirology: HTLV-1. New York: Raven Press, 1990, 251–265.

    Google Scholar 

  29. Gallo RC, Montagnier L. The chronology of AIDS research. Nature. 1987;326:435–6.

    CAS  PubMed  Google Scholar 

  30. Crewdson J. In Gallo case, truth termed a casualty. Chicago Tribune 1 Jan. 1995. Web 17 Apr. 2013. http://www.virusmyth.com/aids/hiv/jcgallocase.htm

  31. The Nobel Prize in Physiology or Medicine 2008: Harald zur Hausen, Françoise Barré-Sinoussi, Luc Montagnier, Web 10 Apr. 2103. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2008/

  32. Gallo RC, Montagnier L. The Discovery of HIV as the Cause of AIDS. N Engl J Med 2003; 349:2283–2285.

    CAS  PubMed  Google Scholar 

  33. Moore PS, Chang Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer 2010;10:878–889.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1964;15:702–703.

    Google Scholar 

  35. Litter E, Baylis SA, Zeng Y, et al. Diagnosis of nasopharyngeal carcinoma by means of recombinant Epstein-Barr virus proteins. Lancet 1991;337:685–689.

    Google Scholar 

  36. Blumberg BS, London WT. Hepatitis B virus: Pathogenesis and prevention of primary cancer of the liver. Cancer 1982;50:2657–2665.

    CAS  PubMed  Google Scholar 

  37. Miyoshi I, et al. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature 1981;294, 770–771.

    CAS  PubMed  Google Scholar 

  38. Durst M, Gissmann L, Ikenberg H. et al. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 1983;80, 3812–3815.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Boshart M, Gismann L, Ikenberg H, et al. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J 1984;3:1151–1157.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Gallo RC, Montagnier L. Op. cit.

    Google Scholar 

  41. Choo QL, Kyo G, Weiner AJ, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989;244:359–362.

    CAS  PubMed  Google Scholar 

  42. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994;265:1865–1869.

    Google Scholar 

  43. Feng H, Shuda M, Chang Y, et al.. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008;319:1096–1100.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Dillman RO. Cancer immunotherapy. Cancer Biother Radiopharma 2011;26:1–64.

    CAS  Google Scholar 

  45. Kirkwood JM, Butterfield LH, Tarhini AA, et al. Immunotherapy of cancer in 2012. CA Cancer J Clin 2012;62:309–335. doi: 10.3322/caac.20132

    PubMed Central  PubMed  Google Scholar 

  46. Hematologic Malignancies: Methods and techniques. GB Faguet editor. Totowa NJ, The Humana Press, 2001.

    Google Scholar 

  47. Brisco MJ. Quantifying residual leukemia by clone-specific polymerase chain reaction, In: Hematologic Malignancies: Methods and techniques, GB Faguet editor, Totowa NJ, The Humana Press, 2001.

    Google Scholar 

  48. Brisco MJ. Ibidem.

    Google Scholar 

  49. Outcomes Working Group, Health Services Research Committee, America Society of Clinical Oncology. Outcomes of cancer treatment for technology assessment and cancer treatment guidelines. J Clin Oncol 1996;14:671–679.

    Google Scholar 

  50. Guthrie F. XIII – On some derivatives from the olefines. Q J Chem So 1860;12:109–126. Web 25 Apr. 2013. http://pubs.rsc.org/en/Content/ArticleLanding/1860/QJ/qj8601200109

  51. Encyclopedia of the First World War: Deaths from gas attacks, available online at http://www.spartacus.schoolnet.co.uk/FWWgasdeaths.htm

  52. Krumbhaar EB. Role of the blood and the bone marrow in certain forms of gas poisoning. JAMA 1919;72:39–41.

    Google Scholar 

  53. Pappenheimer AM, Vance M. The effects of intravenous injections of Di-Chloroethylsulfide in rabbits, with special reference to its leukotoxic action. J Exp Med 1920;31:71–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Lynch VHW, SmithE K Marshall: On dichlorethylsulphide (mustard gas). I. The systemic effects and mechanism of action. J. Pharmacol Exp Ther 1919;12, 265.

    Google Scholar 

  55. Flury F, Wieland H: Uber Kampfgasvergiftungen VII. Die pharmakologische Wirkung des Dichlorathylsulfids. Ztschr. f. d. ges Exp Med 1921;13:367.

    Google Scholar 

  56. Yoshida T. The Yoshida sarcoma, an ascites tumor. Gann 1949;40:1–20.

    Google Scholar 

  57. Shear MJ, Hartwell JL, Peters VB, et al. Some aspects of a joint institutional research program on chemotherapy of cancer: current laboratory and clinical experiments with bacterial polysaccharide and with synthetic organic compounds. In: Moulton FR, editor. Approaches to tumor chemotherapy. Washington (DC): AAAS; 1947. p. 236–84.

    Google Scholar 

  58. Berenblum I. Experimentl inhibition of tumor induction by mustard gas and other compounds. J Path Bact 1935;40:549–558.

    CAS  Google Scholar 

  59. Einhorn J. Nitrogen mustard: The origin oc chemotherapy for cancer. Int J Radiat Oncol Biol Phys 1985;11:1375–1378.

    CAS  PubMed  Google Scholar 

  60. Christakis P. The Birth of Chemotherapy at Yale Bicentennial Lecture Series: Surgery Grand Round. Yale J Biol Med 2011;84:169–172.

    PubMed Central  PubMed  Google Scholar 

  61. Ibidem.

    Google Scholar 

  62. Ibidem.

    Google Scholar 

  63. Gillman A, Phillips F. The Biological Actions and Therapeutic Applications of the B-Chloroethyl Amines and Sulfides. Science 1946;103;:409–436. Web 20 Apr. 2013. http://www.sciencemag.org/content/103/2675/409.full.pdf?ijkey=ef7e9bd9250d96143df96c63dcc498584aba87de&keytype2=tf_ipsecsha

  64. Rhoads CP. The Edward Gamaliel Janeway Lecture: the sword and the ploughshare. J Mt Sinai Hosp. 1946;13:299–309.

    Google Scholar 

  65. Scislowski S. Not All of Us Were Brave, Toronto CA, Dundurn Press, 1997

    Google Scholar 

  66. Hirsch J. An anniversary for cancer chemotherapy. JAMA 2006;296:1518–1520.

    CAS  PubMed  Google Scholar 

  67. Pechura CM, Rall DP. Eds. Veterans at Risk: The Health Effects of Mustard Gas and Lewisite. Washington DC, National Academies Press, 1993.

    Google Scholar 

  68. Ibidem.

    Google Scholar 

  69. Southern G. Poisonous Inferno. Mustang, OK, Airlife Publishing, 2005.

    Google Scholar 

  70. Pechura CM, Rall DP. Op. cit.

    Google Scholar 

  71. Alexander SF. Medical report of the Bari Harbor Mustard casualties. Mil Surgeon 1947;10:2–17.

    Google Scholar 

  72. Berenblum I. Op. cit.

    Google Scholar 

  73. Goodman LS, Wintrobe MM, Dameshek W, et al. Nitrogen mustard therapy: use of methyl-bis (β-chloroethyl) amine hydrochloride and tris (β-chloroethyl)amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia, and certain allied and miscellaneous disorders. JAMA 1946;132:126–32.

    CAS  Google Scholar 

  74. Rhoads CP. Report on a cooperative study of nitrogen mustard (HN2) therapy of neoplastic disease. Trans Assoc Am Physicians 1947;60:110–117.

    CAS  PubMed  Google Scholar 

  75. DeVita VT Jr, Serpick A. A combination chemotherapy in the treatment of Hodgkin’s disease (HD). Proc Am Assoc Cancer Res 1967;8:13.

    Google Scholar 

  76. Shear MJ, Hartwell JL, Peters VB, et al. Op. cit.

    Google Scholar 

  77. Woods DD. The relation of p-aminobenzoic acid to the mechanism of action of sulfaniamide. Br J Exp Pathol 1940;21:74.

    CAS  PubMed Central  Google Scholar 

  78. Fildes P. A rational approach to research in chemotherapy. Lancet 1940;1:995.

    Google Scholar 

  79. Seeger DR, Smith JM, Hultquist ME. Antigonist for pteroylglutamic acid. J Am Chem Soc 1947;69:2567.

    CAS  PubMed  Google Scholar 

  80. Farber S, Diamond LK, Mercer RD et al. Temporary remissions in acute leukemia in children produced by the folic acid antigonist, 4-aminopteroylglutamic acid (Aminopterin). N Engl J Med 1948;238:787.

    CAS  PubMed  Google Scholar 

  81. Hertz R, Lewis J, Lipsett M. Five years’ experience with chemotherapy of metastatic choriocarcinoma and related trophoblastic tumors in women. Am J Obstet Gynecol 1961;82:631–640.

    CAS  PubMed  Google Scholar 

  82. Seeger DR, Cosulich DB, Smith JM Jr, et al. Analogs of pteroylglutamic acid III. 4-amino derivatives. J Am Chem Soc 1949;71:1753–1758.

    CAS  Google Scholar 

  83. Burchenal JH, Murphy ML, Ellison RR, et al. Clinical evaluation of a new antimetabolite, 6-mercaptopurine, in the treatment of leukemia and allied diseases. Blood 1953;8:965.

    CAS  PubMed  Google Scholar 

  84. Murphy ML, Tan TC, Ellison RR, et al. Clinical evaluation of chloroquine and thioguanine. Proc Am Assoc Cancer Res 1955;2:36.

    Google Scholar 

  85. Morton M. Serendipity in Modern Medical Breakthroughs. New York, NY Arcade Publishing, March 2007.

    Google Scholar 

  86. Rettig R. Cancer Crusade. Op. cit.

    Google Scholar 

  87. Boyd, MR. The NCI In Vitro Anticancer Drug Discovery Screen; Concept, Implementation and Operation 1985–1995. In: Teicher BA (Ed.): Cancer Drug Discovery and Development, Vol. 2; Drug Development; Preclinical Screening, Clinical Trial and Approval, Totowa NJ, The Humana Press, 1997, pp. 23–43.

    Google Scholar 

  88. Introduction, DTP, NCI. Web 3 May 2013. http://dctd.cancer.gov/ProgramPages/dtp/default.htm

  89. Ibidem.

    Google Scholar 

  90. Bainbridge WS. The cancer problem. New York, MacMillan, 1914.

    Google Scholar 

  91. Sikora K, Advani S, Koroltchouk V, et al. Essential drugs for cancer therapy: A World Health Organization Consultation. Ann Oncol 1999;10:385–390.

    CAS  PubMed  Google Scholar 

  92. Ibidem.

    Google Scholar 

  93. WHO Model List of Essential Medicines – 17th List (March 2011): Antineoplastic, Immunocuppressives, and Medicines used in Paliative Care. Web 6 May 2013. http://whqlibdoc.who.int/hq/2011/a95053_eng.pdf

  94. Woglom WH. General review of cancer therapy, In: Moulton FR (ed): Approaches to tumor chemotherapy. Washington, DC AAAS, 1947, p. 1–10.

    Google Scholar 

  95. Hitchings GH, Elion GB. The chemistry and biochemistry of purine analogs. Ann NY Acad Sci 1954;60:195–9.

    CAS  PubMed  Google Scholar 

  96. Heidelberger C, Chaudhuari NK, Danenberg P, et al. Fluorinated pyrimidines. A new class of tumor inhibitory compounds. Nature 1957;179:663–6.

    CAS  PubMed  Google Scholar 

  97. Hertz R, Lewis J, Lipsett M. Op. cit.

    Google Scholar 

  98. Woglom, WH Op. cit.

    Google Scholar 

  99. Tannock I. Cell kinetics and chemotherapy: a critical review. Cancer Treat Rep 62:1117–1133, 1978.

    CAS  PubMed  Google Scholar 

  100. Ibidem.

    Google Scholar 

  101. Skipper HE. Historic milestones in cancer biology: A few that are important to cancer treatment (revisited). Semin Oncol 1979;6:506–514.

    CAS  PubMed  Google Scholar 

  102. Ibidem.

    Google Scholar 

  103. Mendelsohn ML. The growth fraction: a new concept applied to tumors. Science 1960;132:1496.

    Google Scholar 

  104. Goldie JH, Coldman AJ. A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutations rate. Cancer Treat Rep 1979;63:1727–1733.

    CAS  PubMed  Google Scholar 

  105. Laird AK. Dynamics of growth in tumors and normal organisms, Natl Cancer Inst Monogr 1969;30:15–28.

    CAS  PubMed  Google Scholar 

  106. Bonadonna G, Rossi A, Valagussa BS. Adjuvant CMF in operable breast cancer: Ten years later. World J Surg 1985;5:95–115.

    CAS  Google Scholar 

  107. Chute JP, Chen T, Feigal E, et al: Twenty years of phase III trials for patients with extensive-stage small-cell lung cancer: Perceptible progress. J Clin Oncol 1999;17:1794–1801.

    CAS  PubMed  Google Scholar 

  108. Breathnach OS, Freidlin B, Concley B, et al. Twenty-Two Years of Phase III Trials for Patients With Advanced Non–Small-Cell Lung Cancer: Sobering Results. JCO 2001:19:1734–1742.

    CAS  Google Scholar 

  109. Karnofsky DA, Abelmann WH, Craver LF, et al. The use of nitrogen mustards in the palliative treatment of carcinoma. Cancer 1948;1:634–656.

    Google Scholar 

  110. Kennedy BJ. The snail’s pace of lung carcinoma chemotherapy. Cancer 1998;82:801–803.

    CAS  PubMed  Google Scholar 

  111. Schiller J, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002;346:92–8.

    CAS  PubMed  Google Scholar 

  112. Soon YY, Stokler MR, Askie LA, et al. Duration of Chemotherapy for Advanced Non–Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis of Randomized Trials. JCO 2009;27:3277–3283.

    Google Scholar 

  113. Da Silvera Lima JP, Viera dos Santos L, Chen Sasse E, et al. Optimal duration of first-line chemotherapy for advanced non-small cell lung cancer: A systematic review with meta-analysis. Eur J Cancer 2009;45:601607.

    Google Scholar 

  114. SEER. Cancer Statistics: Lung & Bronchus; 5-year relative and period survival (SCC/NSCC). Web 25 Mar. 2013. http://seer.cancer.gov/csr/1975_2009_pops09/browse_csr.php?section=15&page=sect_15_table.13.html

  115. Dranitsaris G, Cottrell W, Evans WK. The cost and cost-effectiveness of treating non-small cell lung cancer. Curr Opin Oncol 2002;14:375–83.

    PubMed  Google Scholar 

  116. Martin DS, Gelhorn A. Combinations of chemical compounds in experimental cancer chemotherapy. Cancer Res 1951;11:35.

    Google Scholar 

  117. Skipper HE. Nucleotide metabolism and cancer chemotherapy, In: Rebuck JW, Bethell FH, Monto RW, Eds: The Leukemias: Etiology, Pathophysiology, and Treatment. New York, Academic Press, 1957, p 541.

    Google Scholar 

  118. Freireich EJ, Karon M, Frei E III. Quadruple combination therapy (VAMP) for acute lymphoblastic leukemia of childhood. Proc Am Assoc Cancer Res 5:20, 1964.

    Google Scholar 

  119. Holland JF. Hopes for tomorrow versus realities of today: therapy and prognosis in acute lymphocytic leukemia of childhood. Pediatrics 1970;45:191–3.

    CAS  PubMed  Google Scholar 

  120. DeVita VT, Serpick A. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Proc Am Assoc Cancer Res 1967;8:13.

    Google Scholar 

  121. Devita VT Jr, Simon RM, Hubbard SM et al. Curability of advanced Hodgkin’s disease with chemotherapy: Long-term followu-up of MOPP-treated patients at the National Cancer Institute (NCI). Ann Intern Med 1980;92:586–595.

    Google Scholar 

  122. Donohue JP, Einhorn LH, Perez JM. Improved management of non-seminomatous testis tumors. Cancer 1978;42:2903–8.

    CAS  PubMed  Google Scholar 

  123. Surbone A and DeVita VT Jr. Dose intensity. The neglected variable in clinical trials. Ann NY Acad Sci 1993;698:279–288.

    CAS  PubMed  Google Scholar 

  124. Hryaiuk WA, Figueredo A, Goodyear M. Application of dose intensity to problems in chemotherapy of breast and colon cancer. Semin Oncol 1987;14:3–11.

    Google Scholar 

  125. Waxman S, Anderson KC. History of the development of arsenic derivatives in cancer therapy. Oncologist 2001;6:3–10.

    CAS  PubMed  Google Scholar 

  126. Aublanc JB. Dissertation sur le cancer présentée et soutenue à l’Ecole de médecine de Paris, le 16 pluviôse an XI, par JB Aublanc. PhD diss., imp. Farge, 1803, pg 40.

    Google Scholar 

  127. Overview of HSCT in Europe: 2010. European Group for Blood and Marrow Transplantation. Web 14 May 2013. http://www.ebmt.org/Contents/Research/TransplantActivitySurvey/Results/Pages/Results.aspx

  128. Ibidem.

    Google Scholar 

  129. Stephenson J. Bone marrow/Stem cells: No edge in breast cancer. JAMA 1999;281:1641–1642.

    Google Scholar 

  130. Stadtmauer EA et al. Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer. Philadelphia Bone Marrow Transplant Group. N Engl J Med 2000;342:1069–1076.

    CAS  PubMed  Google Scholar 

  131. Editorial. Retraction for Baxwoda et al 13 (10):2483. J Clin Oncol 2001;19:2973.

    Google Scholar 

  132. Farquhar C, Basser R, Marjoribanks J, et al. High dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with early poor prognosis breast cancer (Cochrane Review). In: The Cochrane Library, Issue e, 2004. Chichester, UK: John Wiley & Sons, ltd.

    Google Scholar 

  133. Overview of HSCT in Europe: 2010. Op.cit.

    Google Scholar 

  134. Center for International Blood and Marrow Transplant, a contractor for the C.W. Bill Young Cell Transplantation Program operated through the U. S. Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau. U.S. Transplant Data by Center Report, Breast cancer, Number of Transplants Reported for Breast cancer From 2008 – 2011. Web 15 May 2013. http://bloodcell.transplant.hrsa.gov/research/transplant_data/us_tx_data/data_by_disease/national.aspx

  135. Ibidem.

    Google Scholar 

  136. Bhatnagar B, Badros AZ. Controversies in Autologous Stem Cell Transplantation for the Treatment of Multiple Myeloma. http://dx.doi.org/10.5772/54115

  137. Kolb HJ, Socie G, Duell T, et al. Malignant neoplasms in long-term survivors of bone marrow transplantation. Late Effects Working Party of the European Cooperative Group for Blood and Marrow Transplantation and the European Late Effect Project Group. Ann Intern Med 1999;131:738–744.

    CAS  PubMed  Google Scholar 

  138. Wingard JR, Majhail NS, Brazauskas R, et al. Long-Term Survival and Late Deaths After Allogeneic Hematopoietic Cell Transplantation. J Clin Oncol 2011;29:2230–2239.

    PubMed Central  PubMed  Google Scholar 

  139. Ibidem.

    Google Scholar 

  140. Ibidem.

    Google Scholar 

  141. Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet Blood 2010;115:453–474.

    PubMed  Google Scholar 

  142. Pui C-H, Evans WE. Acute lymphoblastic leukemia. N Engl J Med 1998;339:605–615.

    CAS  PubMed  Google Scholar 

  143. Villela L, Bolaños-Meade J. Acute Myeloid Leukaemia: Optimal Management and Recent Developments. Drugs 2011;71:1537–1550.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Ortiz-Tudela E, Mteyrek A, Ballesta A, et al. Handb Exp Pharmacol . 2013;217:261–288. doi: 10.1007/978-3-642-25950-0_11

    PubMed  Google Scholar 

  145. Hrushesky, WJM. The Rationale for Non-Zero-Order Drug Delivery Using Automatic, Computer-Based Drug Delivery Systems (Chronotherapy). J Biol Resp Modifiers 1987;6:587–598.

    CAS  Google Scholar 

  146. Perry MC (Ed). The chemotherapy source book. Baltimore, MD, Williams and Wilkins; 1st edition, 1992.

    Google Scholar 

  147. Eriguchi M, Levi F, Yanagie HT, et al. Chronotherapy for cancer. Biomed Phamacother. 2003;57(Suppl 1):92s–95s.

    Google Scholar 

  148. Kagan EM. Cancer and the clock: chronotherapy’s struggle for legitimacy. DSpace@MIT Web 18 May 2013. http://dspace.mit.edu/handle/1721.1/39436

  149. Cancer Treatment Centers of America: Chronotherapy. Web 19 May 2013. http://www.cancercenter.com/conventional-cancer-treatment/chemotherapy/chronotherapy.cfm

  150. Druker BJ, Talpaz M, Resta DJ, et al, Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031–1037.

    CAS  PubMed  Google Scholar 

  151. Target cancer therapies. NCI: Fact sheet. Web 24 May 2013. http://www.cancer.gov/cancertopics/factsheet/Therapy/targeted

  152. Chen MH, Kerkel R, Force T. Mechanisms of cardiomyopathy associated with tyrosine kinase inhibitor cancer therapeutics. Circulation 2008;118:84–95.

    PubMed Central  PubMed  Google Scholar 

  153. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001;293:876–880.

    Google Scholar 

  154. Target cancer therapies. NCI: Fact sheet. Op. cit.

    Google Scholar 

  155. Sawyers C. Targeted cancer therap. Nature 2004;432:294–297.

    CAS  PubMed  Google Scholar 

  156. Smith SL. Ten years of Orthoclone OKT3 (muromonab-CD3): a review. Journal of transplant coordination : official publication of the North American Transplant Coordinators Organization (NATCO) 1996 (3):109–119.

    Google Scholar 

  157. Faguet GB, Agee JF. Monoclonal antibodies against the Chronic Lymphocytic Antigen cCLLa: Characterization and sensitivity. Blood 1987;70:437–443.

    CAS  PubMed  Google Scholar 

  158. Silverman GJ. Anti-CD20 therapy and autoimmune disease: therapeutic opportunities and evolving insights. Front Biosci 2007;12:2194–2206.

    CAS  PubMed  Google Scholar 

  159. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235:177–182.

    CAS  PubMed  Google Scholar 

  160. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol 2005;23:1147–1157.

    CAS  PubMed  Google Scholar 

  161. Kreitman RJ. Immunotoxins for Targeted Cancer Therapy. AAPSJ 2006;8:E532–E551.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Faguet GB, Agee JF: Four Ricin chain A-based immunotoxins directed against the common chronic lymphocytic leukemia antigen (cCLLa): In vitro characterization. Blood 1993;82:536–543.

    CAS  PubMed  Google Scholar 

  163. A-dmDT390-bisFv (UCHT1) Immunotoxin Therapy for Patients With T-cell Diseases, Clinical Trials.gov. Web 10 Jun 2013. http://clinicaltrials.gov/show/NCT00611208

  164. Bird BR, Swain SM. Review Cardiac toxicity in breast cancer survivors: review of potential cardiac problems. Clin Cancer Res 2008;14:14–24.

    CAS  PubMed  Google Scholar 

  165. Richardson PG, Mitsiades C, Hideshima T, Anderson KC. Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med 2006;57:33–47.

    CAS  PubMed  Google Scholar 

  166. Holden SN, Eckhardt SG, Basser R, et al. Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol 2005;16:1391–7.

    CAS  PubMed  Google Scholar 

  167. Campiglio M, Normanno N, Ménard S. Re: Effect of epidermal growth factor receptor inhibitor on development of estrogen receptor-negative mammary tumors. J Natl Cancer Inst 2004;96:715.

    PubMed  Google Scholar 

  168. Weinstein IB. Cancer. Addiction to oncogenes – the Achilles heal of cancer. Science 2002;297: 63–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Faguet, G. (2015). The Cancer Cell-Kill Paradigm and Beyond. In: The Conquest of Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9165-6_7

Download citation

Publish with us

Policies and ethics