Almost-Commutative Manifolds and Gauge Theories

  • Walter D. van SuijlekomEmail author
Part of the Mathematical Physics Studies book series (MPST)


In this chapter we analyze the gauge theories corresponding (in the sense of Chap.  6) to a special class of noncommutative manifolds, to wit almost-commutative, or AC manifolds. We will see that this class leads to the usual gauge theories in physics.


Gauge Theory Gauge Group Gauge Transformation Dirac Operator Gauge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kaluza, T.: Zum Unitätsproblem in der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math.Phys.) 1921, 966–972 (1921)Google Scholar
  2. 2.
    Klein, O.: Quantentheorie und fünfdimensionale relativitätstheorie. Z. Phys. 37, 895–906 (1926)CrossRefzbMATHADSGoogle Scholar
  3. 3.
    Iochum, B., Schucker, T., Stephan, C.: On a classification of irreducible almost commutative geometries. J. Math. Phys. 45, 5003–5041 (2004)CrossRefzbMATHMathSciNetADSGoogle Scholar
  4. 4.
    Connes, A.: Essay on Physics and Noncommutative Geometry. In: The Interface of Mathematics and Particle Physics (Oxford, 1988). The Institute of Mathematics and its Applications Conference Series, vol. 24, pp. 9–48. Oxford University Press, New York (1990)Google Scholar
  5. 5.
    Connes, A., Lott, J.: Particle models and noncommutative geometry. Nucl. Phys. Proc. Suppl. 18B, 29–47 (1991)CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Dubois-Violette, M., Madore, J., Kerner, R.: Classical bosons in a noncommutative geometry. Class. Quant. Grav. 6, 1709 (1989)CrossRefzbMATHMathSciNetADSGoogle Scholar
  7. 7.
    Dubois-Violette, M., Madore, J., Kerner, R.: Gauge bosons in a noncommutative geometry. Phys. Lett. B217, 485–488 (1989)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Dubois-Violette, M., Kerner, R., Madore, J.: Noncommutative differential geometry and new models of gauge theory. J. Math. Phys. 31, 323 (1990)CrossRefzbMATHMathSciNetADSGoogle Scholar
  9. 9.
    Dubois-Violette, M., Kerner, R., Madore, J.: Noncommutative differential geometry of matrix algebras. J. Math. Phys. 31, 316 (1990)CrossRefzbMATHMathSciNetADSGoogle Scholar
  10. 10.
    Chamseddine, A.H., Connes, A.: Universal formula for noncommutative geometry actions: unifications of gravity and the standard model. Phys. Rev. Lett. 77, 4868–4871 (1996)CrossRefzbMATHMathSciNetADSGoogle Scholar
  11. 11.
    Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)CrossRefzbMATHMathSciNetADSGoogle Scholar
  12. 12.
    Chamseddine, A.H., Connes, A., Marcolli, M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    van den Dungen, K., van Suijlekom, W.D.: Particle physics from almost commutative spacetimes. Rev. Math. Phys. 24, 1230004 (2012)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Ćaćić, B.: A Reconstruction theorem for almost-commutative spectral triples. Lett. Math. Phys. 100, 181–202 (2012)CrossRefzbMATHMathSciNetADSGoogle Scholar
  15. 15.
    Ćaćić, B.: Real structures on almost-commutative spectral triples. Lett. Math. Phys. 103, 793–816 (2013)CrossRefzbMATHMathSciNetADSGoogle Scholar
  16. 16.
    Boeijink, J., van den Dungen, K.: Notes on topologically non-trivial almost-commutative geometries. Work in progress.Google Scholar
  17. 17.
    Boeijink, J., van Suijlekom, W.D.: The noncommutative geometry of Yang–Mills fields. J. Geom. Phys. 61, 1122–1134 (2011)CrossRefzbMATHADSGoogle Scholar
  18. 18.
    Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  19. 19.
    Gilkey, P.B.: Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. In: Mathematics Lecture Series. Publish or Perish Inc., Wilmington (1984)Google Scholar
  20. 20.
    Vassilevich, D.V.: Heat kernel expansion: user’s manual. Phys. Rept. 388, 279–360 (2003)CrossRefzbMATHMathSciNetADSGoogle Scholar
  21. 21.
    Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser, Boston (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.IMAPPRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations