Noncommutative Geometry and Particle Physics pp 121-135 | Cite as

# Spectral Invariants

Chapter

First Online:

- 1.5k Downloads

## Abstract

In the previous chapter we have identified the gauge group canonically associated to any spectral triple and have derived the generalized gauge fields that carry an action of that gauge group.

## Keywords

Spectral Invariants Generalized Gauge Fields Gauge Group Spectral Activity Asymptotic Taylor Expansion
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

- 1.Chamseddine, A.H., Connes, A.: Universal formula for noncommutative geometry actions: unifications of gravity and the standard model. Phys. Rev. Lett.
**77**, 4868–4871 (1996)CrossRefzbMATHMathSciNetADSGoogle Scholar - 2.Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys.
**186**, 731–750 (1997)CrossRefzbMATHMathSciNetADSGoogle Scholar - 3.Lizzi, F., Mangano, G., Miele, G., Sparano, G.: Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories. Phys. Rev.
**D55**, 6357–6366 (1997)MathSciNetADSGoogle Scholar - 4.Connes, A., Marcolli, M.: Noncommutative Geometry. Quantum Fields and Motives. AMS, Providence (2008)Google Scholar
- 5.Widder, D.V.: The Laplace Transform. Princeton Mathematical Series, vol. 6. Princeton University Press, Princeton (1941)Google Scholar
- 6.Connes, A., Chamseddine, A.H.: Inner fluctuations of the spectral action. J. Geom. Phys.
**57**, 1–21 (2006)CrossRefzbMATHMathSciNetADSGoogle Scholar - 7.van Suijlekom, W.D.: Perturbations and operator trace functions. J. Funct. Anal.
**260**, 2483–2496 (2011)CrossRefzbMATHMathSciNetGoogle Scholar - 8.Higson, N.: The residue index theorem of Connes and Moscovici. In: Surveys in Noncommutative Geometry, Vol. 6 of Clay Mathematics Proceedings, American Mathematical Society, Providence, RI, pp. 71–126 (2006)Google Scholar
- 9.Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc.
**7**, 65–222 (1982)Google Scholar - 10.Hansen, F.: Trace functions as Laplace transforms. J. Math. Phys.
**47**(11), 043504 (2006)Google Scholar - 11.Skripka, A.: Asymptotic expansions for trace functionals. J. Funct. Anal.
**266**, 2845–2866 (2014)CrossRefMathSciNetGoogle Scholar - 12.Gilliam, D.S., Hohage, T., Ji, X., Ruymgaart, F.: The Fréchet derivative of an analytic function of a bounded operator with some applications. Int. J. Math. Math. Sci.
**17**, Art. ID 239025 (2009)Google Scholar - 13.Lifshits, I.: On a problem in perturbation theory (russian). Uspehi Matem. Nauk.
**7**, 171–180 (1952)zbMATHMathSciNetGoogle Scholar - 14.Krein, M.: On a trace formula in perturbation theory. Matem. Sbornik
**33**, 597–626 (1953)MathSciNetGoogle Scholar - 15.Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry I. Math. Proc. Cambridge Philos. Soc.
**77**, 43–69 (1975)CrossRefzbMATHMathSciNetADSGoogle Scholar - 16.Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry II. Math. Proc. Cambridge Philos. Soc.
**78**, 405–432 (1975)CrossRefzbMATHMathSciNetADSGoogle Scholar - 17.Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry III. Math. Proc. Cambridge Philos. Soc.
**79**, 71–99 (1976)CrossRefzbMATHMathSciNetADSGoogle Scholar - 18.Yafaev, D.R.: Mathematical Scattering Theory, vol. 105 of Translations of Mathematical Monographs. General Theory. American Mathematical Society, Providence (1992). (Translated from the Russian by J.R Schulenberger)Google Scholar
- 19.Birman, M.S., Pushnitski, A.B.: Spectral Shift Function, Amazing and Multifaceted. Integr. Eqn. Oper. Theory
**30**, 191–199 (1998). [Dedicated to the memory of Mark Grigorievich Krein (1907–1989)]Google Scholar - 20.Koplienko, L.S.: The trace formula for perturbations of nonnuclear type. Sibirsk. Mat. Zh.
**25**, 62–71 (1984)MathSciNetGoogle Scholar - 21.Potapov, D., Skripka, A., Sukochev, F.: Spectral shift function of higher order. Invent. Math.
**193**, 501–538 (2013)CrossRefzbMATHMathSciNetADSGoogle Scholar - 22.Carey, A., Phillips, J.: Unbounded Fredholm modules and spectral flow. Canad. J. Math.
**50**, 673–718 (1998)CrossRefzbMATHMathSciNetGoogle Scholar - 23.Phillips, J., Raeburn, I.: An index theorem for Toeplitz operators with noncommutative symbol space. J. Funct. Anal.
**120**, 239–263 (1994)CrossRefzbMATHMathSciNetGoogle Scholar - 24.Müller, W.: Relative zeta functions, relative determinants and scattering theory. Commun. Math. Phys.
**192**, 309–347 (1998)CrossRefzbMATHADSGoogle Scholar - 25.Azamov, N.A., Carey, A.L., Sukochev, F.A.: The spectral shift function and spectral flow. Commun. Math. Phys.
**276**, 51–91 (2007)CrossRefzbMATHMathSciNetADSGoogle Scholar - 26.Azamov, N.A., Carey, A.L., Dodds, P.G., Sukochev, F.A.: Operator integrals, spectral shift, and spectral flow. Canad. J. Math.
**61**, 241–263 (2009)CrossRefzbMATHMathSciNetGoogle Scholar - 27.Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras I. Spectral flow. Adv. Math.
**202**, 451–516 (2006)CrossRefzbMATHMathSciNetGoogle Scholar - 28.Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras II. The even case. Adv. Math.
**202**, 517–554 (2006)CrossRefzbMATHMathSciNetGoogle Scholar - 29.Benameur, M.-T., Fack, T.: Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras. Adv. Math.
**199**, 29–87 (2006)CrossRefzbMATHMathSciNetGoogle Scholar - 30.Carey, A.L., Phillips, J., Sukochev, F.A.: On unbounded \(p\)-summable Fredholm modules. Adv. Math.
**151**, 140–163 (2000)CrossRefzbMATHMathSciNetGoogle Scholar - 31.Carey, A., Phillips, J., Sukochev, F.: Spectral flow and Dixmier traces. Adv. Math.
**173**, 68–113 (2003)CrossRefzbMATHMathSciNetGoogle Scholar - 32.Gesztesy, F., Latushkin, Y., Makarov, K.A., Sukochev, F., Tomilov, Y.: The index formula and the spectral shift function for relatively trace class perturbations. Adv. Math.
**227**, 319–420 (2011)CrossRefzbMATHMathSciNetGoogle Scholar - 33.Hermite, C.: Sur la formule d’interpolation de lagrange. J. Reine Angew. Math.
**84**, 70–79 (1878)CrossRefGoogle Scholar - 34.Floater, M.S., Lyche, T.: Two chain rules for divided differences and Faà di Bruno’s formula. Math. Comp.
**76**, 867–877 (2007)CrossRefzbMATHMathSciNetADSGoogle Scholar - 35.Donoghue Jr, W.F.: Monotone Matrix functions and Analytic Continuation. Die Grundlehren der Mathematischen Wissenschaften, Band 207. Springer, New York (1974)Google Scholar

## Copyright information

© Springer Science+Business Media Dordrecht 2015