Advertisement

Gauge Theories from Noncommutative Manifolds

  • Walter D. van Suijlekom
Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

In this Chapter we demonstrate how every noncommutative (Riemannian spin) manifold, viz. every spectral triple, gives rise to a gauge theory in a generalized sense. We derive so-called inner fluctuations via Morita equivalences and interpret these as generalized gauge fields.

Keywords

Gauge Theory Gauge Group Gauge Field Continuous Section Unital Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182, 155–176 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Blackadar, B.: Operator algebras: theory of \(C{^{*}}\)-algebras and von Neumann algebras. Operator algebras and non-commutative geometry, III. In: Encyclopaedia of Mathematical Sciences, vol. 122. Springer-Verlag, Berlin (2006)Google Scholar
  3. 3.
    Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser, Boston (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Connes, A., Marcolli, M.: Noncommutative Geometry. Quantum Fields and Motives. AMS, Providence (2008)Google Scholar
  5. 5.
    van den Dungen, K., van Suijlekom, W.D.: Particle physics from almost commutative spacetimes. Rev. Math. Phys. 24, 1230004 (2012)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Lazzarini, S., Schucker, T.: A Farewell to unimodularity. Phys. Lett. B510, 277–284 (2001)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6, 83–142 (1958)Google Scholar
  8. 8.
    Rieffel, M.A.: Morita equivalence for \(C^{\ast } \)-algebras and \(W^{\ast } \)-algebras. J. Pure Appl. Algebra 5, 51–96 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Beer, W.: On Morita equivalence of nuclear \(C^{\ast } \)-algebras. J. Pure Appl. Algebra 26, 249–267 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Landi, G.: An Introduction to Noncommutative Spaces and their Geometry. Springer, New York (1997)Google Scholar
  11. 11.
    Baaj, S., Julg, P.: Théorie bivariante de Kasparov et opérateurs non bornés dans les \(C^{\ast } \)-modules hilbertiens. C. R. Acad. Sci. Paris Sér. I Math. 296, 875–878 (1983)Google Scholar
  12. 12.
    Kucerovsky, D.: The \(KK\)-product of unbounded modules. \(K\)-Theory 11, 17–34 (1997)Google Scholar
  13. 13.
    Mesland, B.: Unbounded bivariant K-theory and correspondences in noncommutative geometry. J. Reine Angew. Math. 691, 101–172 (2014)Google Scholar
  14. 14.
    Kasparov, G.G.: Equivariant \(KK\)-theory and the Novikov conjecture. Invent. Math. 91, 147–201 (1988)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kirchberg, E., Wassermann, S.: Operations on continuous bundles of \(C^*\)-algebras. Math. Ann. 303, 677–697 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Nilsen, M.: \(C^*\)-bundles and \(C_0(X)\)-algebras. Indiana Univ. Math. J. 45, 463–477 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Williams, D.P.: Crossed products of \(C{^\ast }\)-algebras. In: Mathematical Surveys and Monographs, vol. 134. American Mathematical Society, Providence (2007)Google Scholar
  18. 18.
    Raeburn, I., Williams, D.P.: Morita equivalence and continuous-trace \(C^*\)-algebras. In: Mathematical Surveys and Monographs, vol. 60. American Mathematical Society, Providence (1998)Google Scholar
  19. 19.
    Echterhoff, S., Nest, R., Oyono-Oyono, H.: An analogue of Serre fibrations for \(C^\ast \)-algebra bundles. In: Noncommutativity and Singularities, vol. 55, pp. 209–221. Adv. Stud. Pure Math. The Mathematical Society of Japan, Tokyo (2009)Google Scholar
  20. 20.
    Brain, S., Mesland, B., van Suijlekom, W.D.: Gauge theory for spectral triples and the unbounded Kasparov product. arXiv:1306.1951

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.IMAPPRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations