Advertisement

Noncommutative Riemannian Spin Manifolds

  • Walter D. van SuijlekomEmail author
Chapter
  • 1.6k Downloads
Part of the Mathematical Physics Studies book series (MPST)

Abstract

We now extend our treatment of noncommutative geometric spaces from the finite case to the continuum. This generalizes spin manifolds to the noncommutative world.

Keywords

Riemannian Manifold Dirac Operator Clifford Algebra Spin Manifold Civita Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3, 3–38 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, New Jersey (1989)Google Scholar
  3. 3.
    Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser, Boston (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Várilly, J.C.: Dirac operators and spectral geometry. Notes taken by Paweł Witkowski (2006)Google Scholar
  5. 5.
    Landsman, N.P.: Notes on noncommutative geometry. http://www.math.ru.nl/~landsman/ncg2010.html
  6. 6.
    Jordan, P., Von Neumann, J.: On inner products in linear, metric spaces. Ann. Math. 36(2), 719–723 (1935)Google Scholar
  7. 7.
    Atiyah, M. F.: \(K\)-theory and reality. Quart. J. Math. Oxford Ser. 17(2), 367–386 (1966)Google Scholar
  8. 8.
    Atiyah, M., Bott, R.: On the periodicity theorem for complex vector bundles. Acta Math. 112, 229–247 (1964)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Jost, J.: Riemannian Geometry and Geometric Analysis. Universitext, 3rd edn. Springer, Berlin (2002)CrossRefGoogle Scholar
  10. 10.
    Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Várilly, J.C.: An Introduction to Noncommutative Geometry. Publishing House (EMS Series of Lectures in Mathematics), European Math. Soc (2006)Google Scholar
  12. 12.
    Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994)zbMATHGoogle Scholar
  13. 13.
    Blackadar, B.: Operator algebras, of encyclopaedia of mathematical sciences. Theory of \(C^{\ast }\)-algebras and von Neumann Algebras, Operator Algebras and Non-commutative, Geometry, 3, vol. 122. Springer, Berlin (2006)Google Scholar
  14. 14.
    Takesaki, M.: Theory of operator algebras I, of encyclopaedia of mathematical sciences. Reprint of the first (1979) edn. Operator Algebras and Non-commutative, Geometry, 5, vol. 124. Springer, Berlin (2002)Google Scholar
  15. 15.
    Connes, A.: Noncommutative geometry and reality. J. Math. Phys. 36(11), 6194–6231 (1995)CrossRefzbMATHMathSciNetADSGoogle Scholar
  16. 16.
    Rieffel, M.A.: Metrics on state spaces. Doc. Math. (electronic) 4, 559–600 (1999)Google Scholar
  17. 17.
    D’Andrea, F., Martinetti, P.: A view on optimal transport from noncommutative geometry. Symmetry Integrability Geom. Methods Appl. (SIGMA) 6, 057, 24 (2010)Google Scholar
  18. 18.
    D’Andrea, F., Martinetti, P.: On Pythagoras theorem for products of spectral triples. Lett. Math. Phys. 103, 469–492 (2013)CrossRefzbMATHMathSciNetADSGoogle Scholar
  19. 19.
    Martinetti, P.: Carnot-Carathéodory metric and gauge fluctuation in noncommutative geometry. Commun. Math. Phys. 265, 585–616 (2006)CrossRefzbMATHMathSciNetADSGoogle Scholar
  20. 20.
    Martinetti, P., Wulkenhaar, R.: Discrete Kaluza-Klein from scalar fluctuations in noncommutative geometry. J. Math. Phys. 43, 182–204 (2002)CrossRefzbMATHMathSciNetADSGoogle Scholar
  21. 21.
    Connes, A.: On the spectral characterization of manifolds. J. Noncommut. Geom. 7, 1–82 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182, 155–176 (1996)CrossRefzbMATHMathSciNetADSGoogle Scholar
  23. 23.
    Lord, S., Rennie, A., Várilly, J.C.: Riemannian manifolds in noncommutative geometry. J. Geom. Phys. 62, 1611–1638 (2012)CrossRefzbMATHMathSciNetADSGoogle Scholar
  24. 24.
    Fröhlich, J., Grandjean, O., Recknagel, A.: Supersymmetric quantum theory and non-commutative geometry. Commun. Math. Phys. 193 (1998)Google Scholar
  25. 25.
    Vanhecke, F.J.: On the product of real spectral triples. Lett. Math. Phys. 50, 157–162 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Dabrowski, L., Dossena, G.: Product of real spectral triples. Int. J. Geom. Meth. Mod. Phys. 8, 1833–1848 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Landi, G.: An introduction to noncommutative spaces and their Geometry. Springer, Berlin (1997)Google Scholar
  28. 28.
    Chamseddine, A.H., Connes, A., Marcolli, M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Connes, A., Marcolli, M.: Noncommutative Geometry. Quantum Fields and Motives. AMS, Providence (2008)Google Scholar
  30. 30.
    van den Dungen, K., van Suijlekom, W.D.: Particle physics from almost commutative spacetimes. Rev. Math. Phys. 24, 1230004 (2012)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.IMAPPRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations