Advertisement

Finite Real Noncommutative Spaces

  • Walter D. van Suijlekom
Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

In this chapter, we will enrich the finite noncommutative spaces as analyzed in the previous chapter with a real structure.

References

  1. 1.
    Dubois-Violette, M., Masson, T.: On the first-order operators in bimodules. Lett. Math. Phys. 37, 467–474 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    M. Takesaki. Theory of operator algebras, II. Encyclopedia of Mathematical Sciences, vol. 125. Springer, Berlin (2003). (Operator Algebras and Non-commutative, Geometry, 6)Google Scholar
  3. 3.
    Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182, 155–176 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Krajewski, T.: Classification of finite spectral triples. J. Geom. Phys. 28, 1–30 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Paschke, M., Sitarz, A.: Discrete spectral triples and their symmetries. J. Math. Phys. 39, 6191–6205 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Ćaćić, B.: Moduli spaces of Dirac operators for finite spectral triples. In: Marcolli, M., Parashar, D. (eds.) Quantum Groups and Noncommutative Spaces: Perspectives on Quantum Geometry, Vieweg, Wiesbaden (2010)Google Scholar
  7. 7.
    Jureit, J.-H., Stephan, C.A.: On a classification of irreducible almost-commutative geometries IV. J. Math. Phys. 49, 033502 (2008)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Wigner, E.P.: Normal form of antiunitary operators. J. Mathematical Phys. 1, 409–413 (1960)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Chamseddine, A.H., Connes, A.: Why the standard model. J. Geom. Phys. 58, 38–47 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.IMAPPRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations