Finite Noncommutative Spaces

  • Walter D. van SuijlekomEmail author
Part of the Mathematical Physics Studies book series (MPST)


In this chapter (and the next) we consider only finite discrete topological spaces. However, we will stretch their usual definition, which is perhaps geometrically not so interesting


Structure Space Matrix Algebra Noncommutative Geometry Spectral Triple Distance Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kasparov, G.G.: The operator \(K\)-functor and extensions of \(C^{\ast } \)-algebras. Izv. Akad. Nauk SSSR Ser. Mat. 44, 571–636, 719 (1980)Google Scholar
  2. 2.
    Blackadar, B.: K-Theory for Operator Algebras. Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  3. 3.
    Landsman, N.P.: Mathematical Topics between Classical and Quantum Mechanics. Springer, New York (1998)CrossRefGoogle Scholar
  4. 4.
    Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6, 83–142 (1958)Google Scholar
  5. 5.
    Rieffel, M.A.: Morita equivalence for \(C^{\ast } \)-algebras and \(W^{\ast } \)-algebras. J. Pure Appl. Algebra 5, 51–96 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Raeburn, I., Williams, D.P.: Morita Equivalence and Continuous-trace \(C^*\)-algebras, Volume 60 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1998)Google Scholar
  7. 7.
    Iochum, B., Krajewski, T., Martinetti, P.: Distances in finite spaces from noncommutative geometry. J. Geom. Phys. 37, 100–125 (2001)CrossRefzbMATHMathSciNetADSGoogle Scholar
  8. 8.
    Connes, A.: On the spectral characterization of manifolds. J. Noncommut. Geom. 7, 1–82 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Etingof, P., Golberg, O., Hensel, S., Liu, T., Schwendner, A., Vaintrob, D., Yudovina, E.: Introduction to Representation Theory, Volume 59 of Student Mathematical Library. American Mathematical Society, Providence, RI (2011) (With historical interludes by Slava Gerovitch)Google Scholar
  10. 10.
    Landi, G.: An Introduction to Noncommutative Spaces and their Geometry. Springer, Berlin (1997)Google Scholar
  11. 11.
    André, Y.: Différentielles non commutatives et théorie de Galois différentielle ou aux différences. Ann. Sci. École Norm. Sup. 34(4), 685–739 (2001)Google Scholar
  12. 12.
    Connes, A., Marcolli, M.: Noncommutative Geometry. Quantum Fields and Motives. AMS, Providence (2008)Google Scholar
  13. 13.
    Venselaar, J.J.: Classification and equivalences of noncommutative tori and quantum lens spaces. PhD thesis, Utrecht University (2012)Google Scholar
  14. 14.
    Connes, A., Skandalis, G.: The longitudinal index theorem for foliations. Publ. Res. Inst. Math. Sci. 20, 1139–1183 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Landsman, N.P.: Quantized Reduction as a Tensor Product. In: Quantization of Singular Symplectic Quotients, Volume 198 of Program Mathematics, pp. 137–180, Birkhäuser, Basel (2001)Google Scholar
  16. 16.
    Mesland, B.: Bivariant \(K\)-theory of groupoids and the noncommutative geometry of limit sets. PhD thesis, Universität Bonn (2009)Google Scholar
  17. 17.
    Mesland, B.: Unbounded bivariant K-theory and correspondences in noncommutative geometry. J. Reine Angew. Math. 691, 101–172 (2014)Google Scholar
  18. 18.
    Marcolli, M., van Suijlekom, W.D.: Gauge networks in noncommutative geometry. J. Geom. Phys. 75, 71–91 (2014)CrossRefzbMATHMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.IMAPPRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations