Advertisement

The Noncommutative Geometry of the Standard Model

  • Walter D. van Suijlekom
Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

One of the major applications of noncommutative geometry to physics has been the derivation of the Standard Model of particle physics from a suitable almost-commutative manifold.

Keywords

Gauge Theory Gauge Group Gauge Boson Dirac Operator Mass Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cottingham, W.N., Greenwood, D.A.: An Introduction to the Standard Model of Particle Physics, 2nd edn. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Kane, G.L.: Modern Elementary Particle Physics. Perseus, Cambridge (1993)Google Scholar
  3. 3.
    Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182, 155–176 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Connes, A.: Essay on physics and noncommutative geometry. In: The Interface of Mathematics and Particle Physics (Oxford, 1988), The Institute of Mathematics and its Applications Conference Series, vol. 24, pp. 9–48. Oxford University Press, New York (1990)Google Scholar
  5. 5.
    Connes, A., Lott, J.: Particle models and noncommutative geometry. Nucl. Phys. Proc. Suppl. 18B, 29–47 (1991)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Martín, C.P., Gracia-Bondía, J.M., Várilly, J.C.: The standard model as a noncommutative geometry: the low-energy regime. Phys. Rep. 294, 363–406 (1998)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chamseddine, A.H., Connes, A.: Universal formula for noncommutative geometry actions: unifications of gravity and the standard model. Phys. Rev. Lett. 77, 4868–4871 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Scheck, F., Upmeier, H., Werner, W. (eds.): Noncommutative geometry and the standard model of elementary particle physics. Lecture Notes in Physics, vol. 596. Springer, Berlin (2002) (Papers from the conference held in Hesselberg, March 14–19, 1999)Google Scholar
  10. 10.
    Chamseddine, A.H., Connes, A., Marcolli, M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Barrett, J.W.: A Lorentzian version of the non-commutative geometry of the standard model of particle physics. J. Math. Phys. 48, 012303 (2007)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Connes, A.: Noncommutative geometry and the standard model with neutrino mixing. JHEP 0611, 081 (2006)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lizzi, F., Mangano, G., Miele, G., Sparano, G.: Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories. Phys. Rev. D55, 6357–6366 (1997)ADSMathSciNetGoogle Scholar
  14. 14.
    Connes, A., Marcolli, M.: Noncommutative Geometry. Quantum Fields and Motives. AMS, Providence (2008)Google Scholar
  15. 15.
    van den Dungen, K., van Suijlekom, W.D.: Particle physics from almost commutative spacetimes. Rev. Math. Phys. 24, 1230004 (2012)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Chamseddine, A.H., Connes, A.: Why the standard model. J. Geom. Phys. 58, 38–47 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Ćaćić, B.: Moduli spaces of dirac operators for finite spectral triples. In: Marcolli, M., Parashar, D. (eds.) Quantum Groups and Noncommutative Spaces: Perspectives on Quantum Geometry. Vieweg Verlag, Wiesbaden (2010)Google Scholar
  18. 18.
    Alvarez, E., Gracia-Bondía, J.M., Martin, C.: Anomaly cancellation and the gauge group of the standard model in NCG. Phys. Lett. B364, 33–40 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    Baez, J., Huerta, J.: The algebra of grand unified theories. Bull. Amer. Math. Soc. (N.S.) 47, 483–552 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Englert, F., Brout, R.: Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Weinberg, S.: Physical processes in a convergent theory of the weak and electromagnetic interactions. Phys. Rev. Lett. 27, 1688–1691 (1971)ADSCrossRefGoogle Scholar
  23. 23.
    Weinberg, S.: General theory of broken local symmetries. Phys. Rev. D7, 1068–1082 (1973)ADSGoogle Scholar
  24. 24.
    Weinberg, S.: The quantum theory of fields, vol. 2. Cambridge University Press, Cambridge (1996)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.IMAPPRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations