The Noncommutative Geometry of Yang–Mills Fields

  • Walter D. van SuijlekomEmail author
Part of the Mathematical Physics Studies book series (MPST)


In this Chapter we generalize the noncommutative description of Yang–Mills theory to topologically non-trivial gauge configurations.


Gauge Theory Dirac Operator Principal Bundle Mill Theory Hermitian Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308, 523–615 (1983)CrossRefzbMATHMathSciNetADSGoogle Scholar
  2. 2.
    Bleecker, D.: Gauge Theory and Variational Principles. Addison-wesley, Reading (1981)zbMATHGoogle Scholar
  3. 3.
    Chamseddine, A.H., Connes, A.: Universal formula for noncommutative geometry actions: Unifications of gravity and the standard model. Phys. Rev. Lett. 77, 4868–4871 (1996)CrossRefzbMATHMathSciNetADSGoogle Scholar
  4. 4.
    Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)CrossRefzbMATHMathSciNetADSGoogle Scholar
  5. 5.
    Boeijink, J., van Suijlekom, W.D.: The noncommutative geometry of Yang-Mills fields. J. Geom. Phys. 61, 1122–1134 (2011)Google Scholar
  6. 6.
    Ćaćić, B.: A reconstruction theorem for almost-commutative spectral triples. Lett. Math. Phys. 100, 181–202 (2012)CrossRefzbMATHMathSciNetADSGoogle Scholar
  7. 7.
    Ćaćić, B.: Real structures on almost-commutative spectral triples. Lett. Math. Phys. 103, 793–816 (2013)Google Scholar
  8. 8.
    Boeijink. J., van den Dungen, K.: Notes on topologically non-trivial almost-commutative geometries. Work in progressGoogle Scholar
  9. 9.
    Serre, J.-P.: Modules projectifs et espaces fibrés à fibre vectorielle. In: Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Exposé 23, p. 18. Secrétariat mathématique, Paris (1958)Google Scholar
  10. 10.
    Swan, R.G.: Vector bundles and projective modules. Trans. Am. Math. Soc. 105, 264–277 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Connes, A.: Non-commutative geometry and physics. In: Gravitation et quantifications (Les Houches, 1992), pp 805–950. North-Holland, Amsterdam (1995)Google Scholar
  12. 12.
    Landi, G.: An Introduction to Noncommutative Spaces and their Geometry. Springer, New York (1997)Google Scholar
  13. 13.
    Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser, Boston (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Dixmier, J., Douady, A.: Champs continus d’espaces hilbertiens et de \(C^{\ast } \)-algèbres. Bull. Soc. Math. France 91, 227–284 (1963)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Raeburn, I., Williams, D.P.: Morita Equivalence and Continuous-trace \(C^*\)-algebras, Volume 60 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.IMAPPRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations