Magnetic Resonance in Composites

  • Mirza BichurinEmail author
  • Vladimir Petrov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 201)


In this chapter, we address the electric field induced magnetic resonance field shift in composites of ferrite and piezoelectric components. A phenomenological theory is proposed to treat the ME coupling at frequencies corresponding to ferromagnetic resonance in a multilayer consisting of alternate layers of piezoelectric and magnetostrictive phases. We discuss two models: a simple bimorph structure and a generalized approach in which the multilayer composite is considered as a homogeneous medium. Expressions for the electric field induced magnetic resonance field shift are obtained for both cases. Magnetic resonance field shift is directly proportional to the product of the applied electric field and the ME coupling constant. A method for the calculation of magnetoelectric coefficients from experimental data is presented.


External Electric Field Yttrium Iron Garnet Relative Volume Fraction Piezoelectric Phase Magnetic Susceptibility Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bichurin MI, Petrov VM (1988) Magnetic resonance in layered ferrite-ferrielectric structures. Sov Phys JETP 58:2277Google Scholar
  2. Bichurin MI, Petrov VM (1994) Composite magnetoelectrics: their microwave properties. Ferroelectrics 162:33–35CrossRefGoogle Scholar
  3. Bichurin MI, Petrov VM (1995) Influence of external electric field on magnetic resonance frequency in magnetic ferroelectrics. Ferroelectrics 167:147–150CrossRefGoogle Scholar
  4. Bichurin MI, Petrov VM (2012) Magnetoelectric effects in nanocomposites. In: Bichurin MI, Viehland D (eds) Magnetoelectricity in composites, Pan Stanford Publshing, Singapore, pp 91–104Google Scholar
  5. Bichurin MI, Petrov RV (2013) VM Petrov magnetoelectric effect at thickness shear mode in ferrite-piezoelectric bilayer. Appl Phys Lett 103:0929021CrossRefGoogle Scholar
  6. Bichurin MI, Viehland D (eds) (2012) Magnetoelectricity in composites. Pan Stanford Publshing, Singapore, 273 pGoogle Scholar
  7. Bichurin MI, Venevtsev YN, Didkovskaya OS, Petrov VM, Fomich NN (1990) Magnetoelectric materials: technology features and application perspectives. In: Magnetoelectric substances, Nauka, Moscow, pp 118–132 (in Russian)Google Scholar
  8. Bichurin MI, Petrov VM, Kornev IA (1997) Investigation of magnetoelectric interaction in composite. Ferroelectrics 204:289–297CrossRefGoogle Scholar
  9. Bichurin MI, Kornev IA, Petrov VM, Tatarenko AS, Kiliba YuV, Srinivasan G (2001) Theory of magnetoelectric effects at microwave frequencies in a piezoelectric/magnetostrictive multilayer composite. Phys Rev B 64:094409CrossRefGoogle Scholar
  10. Bichurin MI, Petrov VM, Petrov RV, Bukashev FI, Smirnov AY (2002a) Electrodynamic analysis of strip line on magnetoelectric substrate. Ferroelectrics 280:203–209CrossRefGoogle Scholar
  11. Bichurin MI, Petrov VM, Petrov RV, Kiliba YV, Bukashev FI, Smirnov AY (2002b) Magnetoelectric sensor of magnetic field. Ferroelectrics 280:199–202CrossRefGoogle Scholar
  12. Bichurin MI, Petrov VM, Petrov RV, Kapralov GN, Kiliba YV, Bukashev FI (2002c) Magnetoelectric microwave devices. Ferroelectrics 280:211–218CrossRefGoogle Scholar
  13. Bichurin MI, Petrov VM, Srinivasan G (2002d) Modelling of magnetoelectric effect in ferromagnetic/piezoelectric multilayer composites. Ferroelectrics 280:165CrossRefGoogle Scholar
  14. Bichurin MI, Petrov VM, Kiliba YuV, Srinivasan G (2002e) Magnetic and magnetoelectric susceptibilities of a ferroelectric/ferromagnetic composite at microwave frequencies. Phys Rev B 66:134404CrossRefGoogle Scholar
  15. Bichurin MI, Petrov VM, Galkina TA (2009) Microwave magnetoelectric effects in bilayer of ferrite and piezoelectric. Eur Phys J Appl Phys 45:30801CrossRefGoogle Scholar
  16. Bichurin MI, Petrov VM, Averkin SV, Liverts E (2010) Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part II: Magnetic and magnetoacoustic resonance ranges. J Appl Phys 107:053905CrossRefGoogle Scholar
  17. Bichurin M, Petrov V, Zakharov A, Kovalenko D, Yang SC, Maurya D, Bedekar V, Priya S (2011) Magnetoelectric interactions in lead-based and lead-free composites. Materials 4:651–702CrossRefGoogle Scholar
  18. Bichurin M, PetrovV, Priya S, Bhalla A (2012) Multiferroic magnetoelectric composites and their applications. Adv Condens Matter Phys 2012:129794Google Scholar
  19. Dong S, Zhai J, Li JF, Viehland D, Bichurin MI (2006) Magnetoelectric gyration effect in Tb1 − xDyxFe2 − y/Pb(Zr, Ti)O3laminated composites at the electromechanical resonance. Appl Phys Lett 89:243512CrossRefGoogle Scholar
  20. Li N, Liu M, Zhou Z, Sun NX, Murthy DVB, Srinivasan G, Petrov AO (2011) Electrostatic tuning of ferromagnetic resonance and magnetoelectric interactions in ferrite-piezoelectric heterostructures grown by chemical vapor deposition. Appl Phys Lett 99:192502Google Scholar
  21. Lou J, Pellegrini GN, Liu M, Mathur ND, Sun NX (2012) Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance. Appl Phys. Lett. 100:102907CrossRefGoogle Scholar
  22. Nan C-W, Bichurin MI, Dong S, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspectives, status, and future directions. J Appl Phys 103:031101CrossRefGoogle Scholar
  23. Petrov RV, Srinivasan G, Bichurin MI, Viehland D (2007) Three-dimensional left-handed material lens. Appl Phys Lett 91:104103CrossRefGoogle Scholar
  24. Petrov RV, Pandey R, Srinivasan G, Bichurin MI (2008a) A magnetic field controlled negative-index microwave lens. Microwave Opt Tech Lett 50:2804–2807CrossRefGoogle Scholar
  25. Petrov VM, Srinivasan G, Galkina TA (2008b) Microwave magnetoelectric effects in bilayers of single crystal ferrite and functionally graded piezoelectric. J Appl Phys 104:113910CrossRefGoogle Scholar
  26. Shastry S, Srinivasan G, Bichurin MI, Petrov VM, Tatarenko AS (2004) Microwave magnetoelectric effects in single crystal bilayers of yttrium iron garnet and lead magnesium niobate-lead titanate. Phys Rev B 70:064416CrossRefGoogle Scholar
  27. Srinivasan G (2010) Magnetoelectric composites. Annu Rev Mater Res 40:153CrossRefGoogle Scholar
  28. Srinivasan G, Tatarenko AS, Mathe V, Bichurin MI (2009) Microwave and MM-wave magnetoelectric interactions in ferrite-ferroelectric bilayers. Eur Phys J B 71:371–375CrossRefGoogle Scholar
  29. Tatarenko S, Bichurin MI (2012) Microwave magnetoelectric devices. Adv Condens Matter Phys 2012:286562CrossRefGoogle Scholar
  30. Tatarenko S, Srinivasan G, Bichurin MI (2006) Magnetoelectric microwave phase shifter. Appl Phys Lett 88:183507CrossRefGoogle Scholar
  31. Tatarenko AS, Bichurin MI, Gheevarughese V et. al (2010).Microwave magnetoelectric effects in ferrite-piezoelectric composites and dual electric and magnetic field tunable filters. J. Electroceram. 24:5Google Scholar
  32. Zhai J, Li J, Viehland D, Bichurin MI (2007) Large Magnetoelectric susceptibility: the fundamental property of piezoelectric and magnetostrictive laminated composites. J Appl Phys 101:014102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Electronic and Information SystemsNovgorod State UniversityVeliky NovgorodRussia

Personalised recommendations