Low-Frequency Magnetoelectric Effects in Magnetostrictive-Piezoelectric Composites

  • Mirza BichurinEmail author
  • Vladimir Petrov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 201)


In this chapter, we discuss the theoretical modeling of low-frequency ME effect in layered and bulk composites based on magnetostrictive and piezoelectric materials. Our analysis rests on the effective-medium approach and exact calculation based on elastostatic, electrostatic and magnetostatic equations. The expressions for effective parameters including ME susceptibilities and ME voltage coefficients as functions of material parameters and volume fractions of components are obtained. Longitudinal, transverse and in-plane field orientations are considered. The use of the offered model has allowed to estimate the ME effect in ferrite cobalt–barium titanate, ferrite cobalt–PZT, ferrite nickel–PZT, lanthanum-strontium manganite–PZT composites adequately.


Piezoelectric Layer Rectangular Section Relative Volume Fraction Voltage Coefficient Lanthanum Strontium Manganite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bichurin MI, Petrov VM, Srinivasan G (2002a) Modelling of magnetoelectric effect in ferromagnetic/piezoelectric multilayer composites. Ferroelectrics 280:165 Google Scholar
  2. Bichurin MI, Petrov VM, Srinivasan G (2002b) Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites. J Appl Phys 92:7681Google Scholar
  3. Bichurin MI, Petrov VM, Srinivasan G (2003) Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys Rev B 68:054402CrossRefGoogle Scholar
  4. Bichurin MI, Petrov VM, Srinivasan G (2009) Low-frequency magnetoelectric effects in ferrite–piezoelectric nanostructures. J Magn Magn Mater 321:846–849CrossRefGoogle Scholar
  5. Gheevarughese V, Laletsin U, Petrov VM, Srinivasan G, Fedotov NA (2007) Low-frequency and resonance magnetoelectric effects in lead zirconate titanate and single-crystal nickel zinc ferrite bilayers. J Mater Res 22:2130–2135CrossRefGoogle Scholar
  6. Harshe G, Dougherty JO, Newnham RE (1993a) Theoretical modelling of multilayer magnetoelectric composites. Int J Appl Electromagn Mater 4:145Google Scholar
  7. Harshe G, Dougherty JP, Newnham RE (1993b) Theoretical modelling of 3–0, 0–3 magnetoelectric composites. Int J Appl Electromagn Mater 4:161Google Scholar
  8. Mandal SK, Sreenivasulu G, Petrov VM, Srinivasan G (2011) Magnetization-graded multiferroic composite and magnetoelectric effects at zero bias. Phys Rev B 84:014432CrossRefGoogle Scholar
  9. Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525CrossRefGoogle Scholar
  10. Osaretin IA, Rojas RG (2010) Theoretical model for the magnetoelectric effect in magnetostrictive/piezoelectric composites. Phys Rev B 82:174415CrossRefGoogle Scholar
  11. Park C-S, Avirovik D, Bichurin MI, Petrov VM, Priya S (2012) Tunable magnetoelectric response of dimensionally gradient laminate composites. Appl Phys Lett 100:212901CrossRefGoogle Scholar
  12. Petrov VM, Srinivasan G (2008) Enhancement of magnetoelectric coupling in functionally graded ferroelectric and ferromagnetic bilayers. Phys Rev B 78:184421CrossRefGoogle Scholar
  13. Petrov M, Bichurin MI, Laletin VM, Paddubnaya N, Srinivasan G (2004) Modeling of magnetoelectric effects in ferromagnetic/piezoelectric bulk composites. In: Fiebig M, Eremenko VV, Chupis IE (eds) Magnetoelectric interaction phenomena in crystals-NATO science series II, vol 164. Kluwer Academic Publishers, London, pp 65–70Google Scholar
  14. Petrov VM, Srinivasan G, Laletsin U, Bichurin MI, Tuskov DS (2007) Magnetoelectric effects in porous ferromagnetic-piezoelectric bulk composites: experiment and theory. Phys Rev B 75:174422CrossRefGoogle Scholar
  15. Petrov VM, Srinivasan G, Bichurin MI, Galkina TA (2009) Theory of magnetoelectric effect for bending modes in magnetostrictive-piezoelectric bilayers. J Appl Phys 105:063911CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Electronic and Information SystemsNovgorod State UniversityVeliky NovgorodRussia

Personalised recommendations