Magnetoelectric Interaction in Solids

  • Mirza BichurinEmail author
  • Vladimir Petrov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 201)


Magnetoelectric (ME) interaction in magnetically ordered materials is reviewed. To create new magnetoelectric composites with enhanced ME couplings we discuss the ME properties of ferrite-piezoelectric composites. Such materials would enable one to make novel functional electronics devices. The main objective is a comparative analysis of ME composites that have different connectivity types. It is to emphasize that multilayer composites possess giant ME responses and at the same time the relative simplicity of manufacturing. In addition, composites with 3–0 and 0–3 connectivity types are also easy to make using a minimum monitoring of the synthesis process. The ultimate purpose of theoretical estimates is to predict the ME susceptibility and ME voltage coefficients as the most basic parameters of magnetoelectricity. The magnetoelectric effects occur over a broad frequency bandwidth, extending from the static to millimeter ranges. This offers important opportunities in potential device applications.


Magnetoelectric effect Piezoelectrics Magnetostrictive materials Multilayers Multiferroics 


  1. Asher E (1969) The interaction between magnetization and polarization: phenomenological symmetry consideration. J Phys Soc Jpn 28:7Google Scholar
  2. Astrov DN (1961) Magnetoelectric effect in chromium oxide. Sov Phys JETP 13:729Google Scholar
  3. Aubert G (1982) A novel approach of the magnetoelectric effect in antiferromagnets. J Appl Phys 53:8125CrossRefGoogle Scholar
  4. Bichurin MI (ed) (1997) In: Proceedings of the 3rd international conference on magnetoelectric interaction phenomena in crystals (MEIPIC-3, Novgorod). Ferroelectrics, vol 204, p 356Google Scholar
  5. Bichurin MI (ed) (2002) In: Proceedings of the fourth conference on magnetoelectric interaction phenomena in crystals (MEIPIC-4, Veliky Novgorod). Ferroelectrics, vol 279–280, p 386Google Scholar
  6. Bichurin MI, Petrov VM (1987) Influence of electric field on antiferromagnetic resonance spectrum in iron borate. Phys Solid State 29:2509Google Scholar
  7. Bichurin MI, Petrov VM (1988) Magnetic resonance in layered ferrite-ferrielectric structures. Sov Phys JETP 58:2277Google Scholar
  8. Bichurin MI, Petrov VM (1998) Magnetoelectric materials in the microwave range. Yaroslav-the-Wise Novgorod State University, Novgorod, p 154 (in Russian)Google Scholar
  9. Bichurin MI, Viehland D (eds) (2012) Magnetoelectricity in composites. Pan Stanford Publshing, Singapore, 273 pGoogle Scholar
  10. Bichurin MI, Didkovskaya OS, Petrov VM, Sofronev SE (1985) Resonant magnetoelectric effect in composite materials. Izv Vuzov Ser Physic 1:121 (in Russian)Google Scholar
  11. Bichurin MI, Venevtsev YN, Didkovskaya OS, Petrov VM, Fomich NN (1990) Magnetoelectric materials: technology features and application perspectives. In: Magnetoelectric substances, Nauka, Moscow pp 118–132 (in Russian)Google Scholar
  12. Bichurin MI, Petrov VM, Petrov RV, Bukashev FI, Smirnov AY (2002a) Electrodynamic analysis of strip line on magnetoelectric substrate. Ferroelectrics 280:203–209CrossRefGoogle Scholar
  13. Bichurin MI, Petrov VM, Petrov RV, Kiliba YV, Bukashev FI, Smirnov AY (2002b) Magnetoelectric sensor of magnetic field. Ferroelectrics 280:199–202CrossRefGoogle Scholar
  14. Bichurin MI, Petrov VM, Petrov RV, Kapralov GN, Kiliba YV, Bukashev FI (2002c) Magnetoelectric microwave devices. Ferroelectrics 280:211–218CrossRefGoogle Scholar
  15. Bichurin MI, Petrov VM, Srinivasan G (2002d) Modelling of magnetoelectric effect in ferromagnetic/piezoelectric multilayer composites. Ferroelectrics 280:165CrossRefGoogle Scholar
  16. Bichurin MI, Viehland D, Srinivasan G (2007) Magnetoelectric interactions in ferromagnetic—piezoelectric layered structures: phenomena and devices. J Electroceram 19:243CrossRefGoogle Scholar
  17. Brown Jr WF, et al (1968) Upper bound on the magnetoelectric susceptibility. Phys Rev 168:574Google Scholar
  18. Bunget I, Raetchi V (1981) Magnetoelectric effect in the heterogeneous system NiZn ferritePZT ceramic. Phys Stat Sol 63:55CrossRefGoogle Scholar
  19. Bunget I, Raetchi V (1982) Dynamic magnetoelectric effect in the composite system of NiZn ferrite and PZT ceramics. Rev Roum Phys 27:401Google Scholar
  20. Cheong S-W, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6:13–20CrossRefGoogle Scholar
  21. Dzyaloshinskii IE (1960) On the magneto-electrical effect in antiferromagnets. Sov Phys JETP 10:628Google Scholar
  22. Ederer C, Spaldin NA (2004) Magnetoelectrics: a new route to magnetic ferroelectrics. Nat Mater 3:849–851Google Scholar
  23. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765CrossRefGoogle Scholar
  24. Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D Appl Phys 38:R1CrossRefGoogle Scholar
  25. Fiebig M, Eremenko VV, Chupis IE (eds) (2004) In: Proceedings of the fifth conference on magnetoelectric interaction phenomena in crystals (MEIPIC-5, Sudak) Kiuwer Academic Publishers, NATO Sciences Series, 334 pGoogle Scholar
  26. Folen VJ, Rado GT, Stalder EW (1961) Anysotropy of the magnetoelectric effect in Cr2O3. Phys Rev Lett 6:607CrossRefGoogle Scholar
  27. Freeman AJ, Schmid H (1975) Magnetoelectric interaction phenomena in crystals. Gordon and Breach, London, 228 p Google Scholar
  28. Getman I (1994) Magnetoelectric composite materials: theoretical approach to determine their properties. Ferroelectrics 162:45−50Google Scholar
  29. Harshe G, Dougherty JO, Newnham RE (1993a) Theoretical modelling of multilayer magnetoelectric composites. Int J Appl Electromagn Mater 4:145Google Scholar
  30. Harshe G, Dougherty JP, Newnham RE (1993b) Theoretical modelling of 3-0, 0-3 magnetoelectric composites. Int J Appl Electromagn Mater 4:161Google Scholar
  31. Landau LD, Lifshitz EM (1980) Statistical physics, 3rd edn. Pergamon Press, Oxford, 562 pGoogle Scholar
  32. Lou J, Pellegrini GN, Liu M, Mathur ND, Sun NX (2012) Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance. Appl Phys Lett 100:102907CrossRefGoogle Scholar
  33. Ma J, Hu J, Li Z, Nan C-W (2011) Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater 23:1062–1087CrossRefGoogle Scholar
  34. Mori K, Wuttig M (2002) Magnetoelectric coupling in terfenol-d/polyvinylidenedifluoride composites. Appl Phys Lett 81:100CrossRefGoogle Scholar
  35. Nan C-W, Bichurin MI, Dong S, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspectives, status, and future directions. J Appl Phys 103:031101CrossRefGoogle Scholar
  36. Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525CrossRefGoogle Scholar
  37. O’Dell TH (1970) The electrodynamics of magnetoelectric media. North-Holland Publication Company, Amsterdam, 304 pGoogle Scholar
  38. Opechovski W (1975) Magnetoelectric symmetry. In: Freeman A, Schmid H (eds) Proceedings of symposium on magnetoelectric interaction in crystals, USA, 1973. Gordon and Breach Science Publication, New York, p 47Google Scholar
  39. Priya S, Islam R, Dong S, Viehland D (2007) Recent advancements in magnetoelectric particulate and laminate composites. J Electroceram 19:149–166CrossRefGoogle Scholar
  40. Ramesh R, Nicola A (2007) Spaldin, Multiferroics: progress and prospects in thin films. Nat Mater 6:21–29Google Scholar
  41. Rivera J-P (2009) A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. Eur Phys J B 71:299–313CrossRefGoogle Scholar
  42. Santoro RP, Newnham RE (1966) Survey of magnetoelectric materials. Technical Report AFML TR-66-327, Air Force Materials Lab, OhioGoogle Scholar
  43. Schmid H, Janner A, Grimmer H, Rivera J-P, Ye Z-G (eds) (1993) In: Proceedings of the 2nd international conference on magnetoelectnc interaction phenomena in crystals (MEIPIC-2, Ascona) Ferroelectrics, vol 161–162, 748 pGoogle Scholar
  44. Smolenskii GA, Chupis IE (1982) Ferroelectromagnets. Sov Phys Usp 25:475–493CrossRefGoogle Scholar
  45. Srinivasan G (2010) Magnetoelectric composites. Annu Rev Mater Res 40:153CrossRefGoogle Scholar
  46. Tatarenko AS, Bichurin MI, V.Gheevarughese, et al (2010) Microwave magnetoelectric effects in ferrite-piezoelectric composites and dual electric and magnetic field tunable filters. J Electroceram 24:5Google Scholar
  47. Tellegen BDH (1948) The gyrator, a new electric network element. Philips Res Rep 3:81Google Scholar
  48. Van den Boomgard J, Van Run AMJG (1976) Poling of a ferroelectric medium by means of a built-in space charge field with special reference to sintered magnetoelectric composites. Solid State Commun 19:405CrossRefGoogle Scholar
  49. Van den Boomgard J et al (1974) An in situ grown eutectic magnetoelectric composite materials: part I. J Mater Sci 9:1705CrossRefGoogle Scholar
  50. Van den Boomgard J, Van Run AMJG, Van Suchtelen J (1976) Magnetoelectricity in piezoelectric-magnetostrictive composites. Ferroelectrics 10:295CrossRefGoogle Scholar
  51. Van Run AMJG et al (1974) An in situ grown eutectic magnetoelectric composite materials: part II. J Mater Sci 9:1710CrossRefGoogle Scholar
  52. Van Suchtelen J (1972) Product properties: a new application of composite materials. Philips Res Rep 27:28Google Scholar
  53. Van Suchtelen J (1980) Non structural application of composite materials. Ann Chim Fr 5:139Google Scholar
  54. Wang KF, Liu J-M, Renc ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys 58:321CrossRefGoogle Scholar
  55. Zhai J, Li J, Viehland D, Bichurin MI (2007) Large Magnetoelectric susceptibility: The fundamental property of piezoelectric and magnetostrictive laminated composites. J Appl Phys 101:014102CrossRefGoogle Scholar
  56. Zhai J, Xing Z, Dong S, Li J, Viehland D (2008) Magnetoelectric laminate composites: an overview. J Am Ceram Soc 91:351–358CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Electronic and Information SystemsNovgorod State UniversityVeliky NovgorodRussia

Personalised recommendations