Skip to main content

Novel Plasmonic Probes and Smart Superhydrophobic Devices, New Tools for Forthcoming Spectroscopies at the Nanoscale

  • Conference paper
  • First Online:
Book cover Nano-Structures for Optics and Photonics

Abstract

In this work we review novel strategies and new physical effects to achieve compositional and structural recognition at single molecule level. This chapter is divided in two main parts. The first one introduces the strategies currently adopted to investigate matter at few molecules level. Exploiting the capability of surface plasmon polaritons to deliver optical excitation at nanoscale, we introduce a technique relying on a new transport phenomenon with chemical sensitivity and nanometer spatial resolution. The second part describes how micro and nanostructured superhydrofobic textures can concentrate and localize a small number of molecules into a well-defined region, even when only an extremely diluted solution is available. Several applications of these devices as micro- and nano-systems for high-resolution imaging techniques, cell cultures and tissue engineering applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Long DA (2001) The Raman effect: a unified treatment of the theory of Raman scattering by molecules, 1st edn. Wiley, Chichester

    Google Scholar 

  2. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter 14:R597–R624

    ADS  Google Scholar 

  3. Ko H, Singamaneni S, Tsukruk VV (2008) Nanostructured surfaces and assemblies as SERS media. Small 4:1576–1599

    Google Scholar 

  4. Gopalakrishnan A, Malerba M, Tuccio S, Panaro S, Miele E, Chirumamilla M, Santoriello S, Dorigoni C, Giugni A, Proietti Zaccaria R, Liberale C, De Angelis F, Razzari L, Krahne R, Toma A, Das G, Di Fabrizio E (2012) Nanoplasmonic structures for biophotonic applications: SERS overview. Annalen der Physik 524:620–636

    ADS  Google Scholar 

  5. Campion A, Ivanecky JE, Child CM, Foster M (1995) On the mechanism of chemical enhancement in surface-enhanced Raman scattering. J Am Chem Soc 117:11807–11808

    Google Scholar 

  6. Doering WE, Nie S (2002) Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. J Phys Chem B 106:311–317

    Google Scholar 

  7. Maitani MM, Ohlberg DAA, Li Z, Allara DL, Stewart DR, Williams RS (2009) Study of SERS chemical enhancement factors using buffer layer assisted growth of metal nanoparticles on self-assembled monolayers. J Am Chem Soc 131:6310–6311

    Google Scholar 

  8. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (sers). Phys Rev Lett 78:1667–1670

    ADS  Google Scholar 

  9. Blum C, Schmid T, Opilik L, Weidmann S, Fagerer SR, Zenobi R (2012) Understanding tip-enhanced Raman spectra of biological molecules: a combined Raman, SERS and TERS study. J Raman Spectrosc 43:1895–1904

    ADS  Google Scholar 

  10. Stadler J, Schmid T, Zenobi R (2012) Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale 4:1856–1870

    ADS  Google Scholar 

  11. Pettinger B, Schambach P, Villagómez CJ, Scott N (2012) Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annu Rev Phys Chem 63:379–399

    ADS  Google Scholar 

  12. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    ADS  Google Scholar 

  13. Israelachvili JN (2011) Intermolecular and surface forces, revised 3rd edn. Academic, Burlington

    Google Scholar 

  14. Kalinin SV, Gruverman A (eds) (2010) Scanning probe microscopy of functional materials: nanoscale imaging and spectroscopy. Springer, New York

    Google Scholar 

  15. Dietz C, Herruzo ET, Lozano JR, Garcia R (2011) Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid. Nanotechnology 22:125708

    ADS  Google Scholar 

  16. Torre B, Bertoni G, Fragouli D, Falqui A, Salerno M, Diaspro A, Cingolani R, Athanassiou A (2011) Magnetic force microscopy and energy loss imaging of superparamagnetic iron oxide nanoparticles. Sci Rep 1:202

    ADS  Google Scholar 

  17. Neves CS, Quaresma P, Baptista PV, Carvalho PA, Araújo JaP, Pereira E, Eaton P (2010) New insights into the use of magnetic force microscopy to discriminate between magnetic and nonmagnetic nanoparticles. Nanotechnology 21:305706

    Google Scholar 

  18. Schreiber S, Savla M, Pelekhov DV, Iscru DF, Selcu C, Hammel PC, Agarwal G (2008) Magnetic force microscopy of superparamagnetic nanoparticles. Small 4:270–278

    Google Scholar 

  19. Zhang L, Sakai T, Sakuma N, Ono T, Nakayama K (1999) Nanostructural conductivity and surface-potential study of low-field-emission carbon films with conductive scanning probe microscopy. Appl Phys Lett 75(22):3527

    ADS  Google Scholar 

  20. Lorenzoni M, Giugni A, Torre B (2013) Oxidative and carbonaceous patterning of Si surface in an organic media by scanning probe lithography. Nanoscale Res Lett 8(1):1–9

    Google Scholar 

  21. Tello M, Garcia F, Garcia R (2006) Fabrication of nanometer-scale structures by local oxidation nanolithography. In Bhushan B, Fuchs H (eds) Applied scanning probe methods IV: industrial applications, 2006 edn. Springer, Berlin/New York, pp 137–158

    Google Scholar 

  22. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci 93:3477–3481

    ADS  Google Scholar 

  23. Wildling L, Unterauer B, Zhu R, Rupprecht A, Haselgrübler T, Rankl C, Ebner A, Vater D, Pollheimer P, Pohl EE, Hinterdorfer P, Gruber HJ (2011) Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug Chem 22:1239–1248

    Google Scholar 

  24. Carvalho FA, Carneiro FA, Martins IC, Assunção Miranda I, Faustino AF, Pereira RM, Bozza PT, Castanho MARB, Mohana-Borges R, Da Poian AT, Santos NC (2012) Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J Virol 86:2096–2108

    Google Scholar 

  25. Canale C, Petrelli A, Salerno M, Diaspro A, Dante S (2013) A new quantitative experimental approach to investigate single cell adhesion on multifunctional substrates. Biosens Bioelectron 48:172–179

    Google Scholar 

  26. Munday JN, Capasso F, Parsegian VA (2009) Measured long-range repulsive Casimir-Lifshitz forces. Nature 457:170–173

    ADS  Google Scholar 

  27. Kisiel M, Gnecco E, Gysin U, Marot L, Rast S, Meyer E (2011) Suppression of electronic friction on Nb films in the superconducting state. Nat Mater 10:119–122

    ADS  Google Scholar 

  28. De Angelis F, Proietti Zaccaria R, Francardi M, Liberale C, Di Fabrizio E (2011) Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers. Opt Express 19:22268–22279

    ADS  Google Scholar 

  29. De Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, Lazzarino M, Maksymov I, Liberale C, Andreani LC, Di Fabrizio E (2010) Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat Nanotechnol 5:67–72

    ADS  Google Scholar 

  30. Bao W, Melli M, Caselli N, Riboli F, Wiersma DS, Staffaroni M, Choo H, Ogletree DF, Aloni S, Bokor J, Cabrini S, Intonti F, Salmeron MB, Yablonovitch E, Schuck PJ, Weber-Bargioni A (2012) Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338(6112):1317–1321

    ADS  Google Scholar 

  31. Xu D, Watt GD, Harb JN, Davis RC (2005) Electrical conductivity of ferritin proteins by conductive AFM. Nano Lett 5:571–577

    ADS  Google Scholar 

  32. Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes V, Frisbie C (2003) Comparison of electronic transport measurements on organic molecules. Adv Mater 15:1881–1890

    Google Scholar 

  33. Giugni A, Torre B, Toma A, Francardi M, Malerba M, Alabastri A, Proietti Zaccaria R, Stockman MI, Di Fabrizio E (2013) Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat Nanotechnol 8:845–852

    ADS  Google Scholar 

  34. De Angelis F, Gentile F, Mecarini F, Das G, Moretti M, Candeloro P, Coluccio ML, Cojoc G, Accardo A, Liberale C, Proietti Zaccaria R, Perozziello G, Tirinato L, Toma A, Cuda G, Cingolani R, Di Fabrizio E (2011) Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics 5:682–687

    ADS  Google Scholar 

  35. Limongi T, Cesca F, Gentile F, Marotta R, Ruffilli R, Barberis A, Dal Maschio M, Petrini EM, Santoriello S, Benfenati F, Di Fabrizio E (2013) Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks. Small 9:402–412

    Google Scholar 

  36. Kolomenski A, Kolomenskii A, Noel J, Peng S, Schuessler H (2009) Propagation length of surface plasmons in a metal film with roughness. Appl Opt 48:5683–5691

    ADS  Google Scholar 

  37. Nagaraj, Krokhin AA (2010) Long-range surface plasmons in dielectric-metal-dielectric structure with highly anisotropic substrates. Phys Rev B 81:085426

    ADS  Google Scholar 

  38. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:077402

    ADS  Google Scholar 

  39. Kats MA, Yu N, Genevet P, Gaburro Z, Capasso F (2011) Effect of radiation damping on the spectral response of plasmonic components. Opt Express 19:21748–21753

    ADS  Google Scholar 

  40. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404

    ADS  Google Scholar 

  41. Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19:22029

    ADS  Google Scholar 

  42. Issa NA, Guckenberger R (2007) Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons. Opt Express 15(19):12131

    ADS  Google Scholar 

  43. Proietti Zaccaria R, De Angelis F, Toma A, Razzari L, Alabastri A, Das G, Liberale C, Di Fabrizio E (2012) Surface plasmon polariton compression through radially and linearly polarized source. Opt Lett 37:545

    ADS  Google Scholar 

  44. Proietti Zaccaria R, Alabastri A, De Angelis F, Das G, Liberale C, Toma A, Giugni A, Razzari L, Malerba M, Sun HB, Di Fabrizio E (2012) Fully analytical description of adiabatic compression in dissipative polaritonic structures. Phys Rev B 86:035410

    ADS  Google Scholar 

  45. Gramotnev DK, Vogel MW, Stockman MI (2008) Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J Appl Phys 104(3):034311

    ADS  Google Scholar 

  46. Chen X-W, Sandoghdar V, Agio M (2010) Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field. Opt Express 18:10878–10887

    Google Scholar 

  47. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332(6030):702–704

    ADS  Google Scholar 

  48. Raether H (1988) Surface plasmons on smooth surfaces, vol. 111 of Springer tracts in modern physics. Springer, Berlin/Heidelberg

    Google Scholar 

  49. Fowler RH (1931) The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys Rev 38:45–56

    ADS  Google Scholar 

  50. Kretschmann E (1971) Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen. Zeitschrift für Physik 241(4):313–324

    ADS  Google Scholar 

  51. Genchev Z, Nedelchev N, Mateev E, Stoyanov H (2008) Analytical approach to the prism coupling problem in the kretschmann configuration. Plasmonics 3(1):21–26

    Google Scholar 

  52. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik 216(4):398–410

    ADS  Google Scholar 

  53. Brueck SRJ, Diadiuk V, Jones T, Lenth W (1985) Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves. Appl Phys Lett 46(10):915

    ADS  Google Scholar 

  54. Baron A, Devaux E, Rodier J-C, Hugonin J-P, Rousseau E, Genet C, Ebbesen TW, Lalanne P (2011) Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons. Nano Lett 11(10):4207–4212

    ADS  Google Scholar 

  55. Ropers C, Neacsu CC, Elsaesser T, Albrecht M, Raschke MB, Lienau C (2007) Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 7(9):2784–2788. PMID: 17685661

    ADS  Google Scholar 

  56. Neacsu CC, Berweger S, Olmon RL, Saraf LV, Ropers C, Raschke MB (2010) Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett 10(2):592–596. PMID: 20067296.

    ADS  Google Scholar 

  57. Berweger S, Atkin JM, Xu XG, Olmon RL, Raschke MB (2011) Femtosecond nanofocusing with full optical waveform control. Nano Lett 11(10):4309–4313

    ADS  Google Scholar 

  58. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    ADS  Google Scholar 

  59. Rakic AD, Djurišic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271

    ADS  Google Scholar 

  60. Lalanne P, Hugonin J, Rodier J (2005) Theory of surface plasmon generation at nanoslit apertures. Phys Rev Lett 95:263902

    ADS  Google Scholar 

  61. Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy U (2012) Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt Express 20:28594–28602

    ADS  Google Scholar 

  62. Green MA, Pillai S (2012) Harnessing plasmonics for solar cells. Nat Photon 6:130–132

    ADS  Google Scholar 

  63. Mubeen S, Lee J, Singh N, Kramer S, Stucky GD, Moskovits M (2013) An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8:247–251

    ADS  Google Scholar 

  64. Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ (2013) Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett 13(1):240–247

    ADS  Google Scholar 

  65. Spicer W (1958) Photoemissive, photoconductive, and optical absorption studies of alkali-antimony compounds. Phys Rev 112:114–122

    ADS  Google Scholar 

  66. Böer K (2010) The schottky barrier. In: Introduction to space charge effects in semiconductors. Springer series in solid-state sciences, vol 160. Springer, Berlin/Heidelberg, pp 41–91

    Google Scholar 

  67. Lampert M, Many A, Mark P (1964) Space-charge-limited currents injected from a point contact. Phys Rev 135:A1444–A1453

    ADS  Google Scholar 

  68. Smit GDJ, Rogge S, Klapwijk TM (2002) Scaling of nano-Schottky-diodes. Appl Phys Lett 81:3852

    ADS  Google Scholar 

  69. Donolato C (1995) Electrostatic problem of a point charge in the presence of a semi-infinite semiconductor. J Appl Phys 78(2):684

    ADS  Google Scholar 

  70. Donolato C (2004) Approximate analytical solution to the space charge problem in nanosized Schottky diodes. J Appl Phys 95(4):2184

    ADS  Google Scholar 

  71. Hudait M, Krupanidhi S (2001) Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures. Phys B Condens Matter 307:125–137

    ADS  Google Scholar 

  72. Hardikar S, Hudait M, Modak P, Krupanidhi S, Padha N (1999) Anomalous current transport in Au/low-doped n-GaAs Schottky barrier diodes at low temperatures. Appl Phys A Mater Sci Process 68:49–55

    ADS  Google Scholar 

  73. Casey HC, Sell DD, Wecht KW (1975) Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV. J Appl Phys 46(1):250.

    Google Scholar 

  74. Hugelmann M, Schindler W (2004) Schottky diode characteristics of electrodeposited Au/n-Si(111) nanocontacts. Appl Phys Lett 85(16):3608

    ADS  Google Scholar 

  75. Vasko SE, Jiang W, Lai H, Sadilek M, Dunham S, Rolandi M (2013) High-field chemistry of organometallic precursors for direct-write of germanium and silicon nanostructures. J Mater Chem C 1:282

    Google Scholar 

  76. Lorenzoni M, Torre B (2013) Scanning probe oxidation of SiC, fabrication possibilities and kinetics considerations. Appl Phys Lett 103(16):163109

    ADS  Google Scholar 

  77. Sugimura H, Nakagiri N (1995) Chemical approach to nanofabrication: modifications of silicon surfaces patterned by scanning probe anodization. Jpn J Appl Phys 34: 3406–3411

    ADS  Google Scholar 

  78. Morimoto K, Araki K, Yamashita K, Morita K, Niwa M (1997) Si nanofabrication using AFM field enhanced oxidation and anisotropic wet chemical etching. Appl Surf Sci 117–118:652–659

    Google Scholar 

  79. Tello M, García R (2001) Nano-oxidation of silicon surfaces: comparison of noncontact and contact atomic-force microscopy methods. Appl Phys Lett 79(3):424

    ADS  Google Scholar 

  80. García R, Calleja M, Rohrer H (1999) Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges. J Appl Phys 86(4):1898

    ADS  Google Scholar 

  81. Canale C, Torre B, Ricci D, Braga P (2011) Recognizing and avoiding artifacts in atomic force microscopy imaging. In: Braga PC, Ricci D (eds) Atomic force microscopy in biomedical research. Methods in molecular biology vol 736. Humana Press, New York, pp 31–43

    Google Scholar 

  82. Chen X-W, Mohammadi A, Ghasemi AHB, Agio M (2013) Ultrafast coherent nanoscopy. Mol Phys 111:3003–3012

    Google Scholar 

  83. Mohammadi A, Agio M (2012) Light scattering under nanofocusing: towards coherent nanoscopies. Opt Commun 285:3383–3389

    ADS  Google Scholar 

  84. Evans CL, Xie XS (2008) Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem 1:883–909

    Google Scholar 

  85. Min W, Freudiger CW, Lu S, Xie XS (2011) Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu Rev Phys Chem 62(1):507–530. PMID: 21453061

    ADS  Google Scholar 

  86. Fu D, Holtom G, Freudiger C, Zhang X, Xie XS (2013) Hyperspectral imaging with stimulated raman scattering by chirped femtosecond lasers. J Phys Chem B 117(16):4634–4640

    Google Scholar 

  87. Freudiger CW, Min W, Holtom GR, Xu B, Dantus M, XieX S (2011) Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy. Nat Photonics 5:103–109

    ADS  Google Scholar 

  88. Ideguchi T, Holzner S, Bernhardt B, Guelachvili G, Picque N, Hansch TW (2013) Coherent Raman spectro-imaging with laser frequency combs. Nature 502:355–358

    ADS  Google Scholar 

  89. Tian P, Keusters D, Suzaki Y, Warren WS (2003) Femtosecond phase-coherent two-dimensional spectroscopy. Science 300:1553–1555

    ADS  Google Scholar 

  90. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546

    Google Scholar 

  91. Gentile F, Moretti M, Limongi T, Falqui A, Bertoni G, Scarpellini A, Santoriello S, Maragliano L, Proietti Zaccaria R, di Fabrizio E (2012) Direct imaging of DNA fibers: the visage of double helix. Nano Lett 12:6453–6458

    ADS  Google Scholar 

  92. Limongi T, Cesca F, Gentile F, Marotta R, Ruffilli R, Barberis A, Dal Maschio M, Petrini EM, Santoriello S, Benfenati F, Di Fabrizio E (2013) 3D cell cultures: nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks (small 3/2013). Small 9:334–334

    Google Scholar 

  93. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420

    Google Scholar 

  94. Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107(2):102–108

    Google Scholar 

  95. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123:1603–1611

    Google Scholar 

  96. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Google Scholar 

  97. Tirinato L, Gentile F, Mascolo DD, Coluccio M, Das G, Liberale C, Pullano S, Perozziello G, Francardi M, Accardo A, Angelis FD, Candeloro P, Fabrizio ED, {SERS} analysis on exosomes using super-hydrophobic surfaces. Microelectron Eng 97(0):337–340 (2012) Micro- and Nano-Engineering (MNE) 2011, selected contributions: Part I

    Google Scholar 

  98. Accardo A, Tirinato L, Altamura D, Sibillano T, Giannini C, Riekel C, Di Fabrizio E (2013) Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering. Nanoscale 5:2295–2299

    ADS  Google Scholar 

  99. Notingher I, Green C, Dyer C, Perkins E, Hopkins N, Lindsay C, Hench LL (2004) Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy. J R Soc Interface 1:79–90

    Google Scholar 

  100. Accardo A, Gentile F, Mecarini F, De Angelis F, Burghammer M, Di Fabrizio E, Riekel C (2010) In situ x-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic pmma surfaces. Langmuir 26(18):15057–15064

    Google Scholar 

  101. Watson JD, Crick FHC (1953) The structure of DNA. Cold Spring Harb Symp Quant Biol 18:123–131

    Google Scholar 

  102. Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145–150

    ADS  Google Scholar 

  103. Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799

    ADS  Google Scholar 

  104. Riehn R, Lu M, Wang Y-M, Lim SF, Cox EC, Austin RH (2005) Restriction mapping in nanofluidic devices. Proc Natl Acad Sci U S A 102:10012–10016

    ADS  Google Scholar 

  105. Lim SW, Abate AR (2013) Ultrahigh-throughput sorting of microfluidic drops with flow cytometry. Lab Chip 13:4563–4572

    Google Scholar 

  106. Marie R, Pedersen JN, Bauer DLV, Rasmussen KH, Yusuf M, Volpi E, Flyvbjerg H, Kristensen A, Mir KU (2013) Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Proc Natl Acad Sci U S A 110:4893–4898

    ADS  Google Scholar 

  107. Wohlgamuth CH, McWilliams MA, Slinker JD (2013) DNA as a molecular wire: distance and sequence dependence. Anal Chem 85:8634–8640

    Google Scholar 

  108. Poma A, Spanò L, Pittaluga E, Tucci A, Palladino L, Limongi T (2005) Interactions between saporin, a ribosome-inactivating protein, and DNA: a study by atomic force microscopy. J Microsc 217:69–74

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Di Fabrizio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Giugni, A. et al. (2015). Novel Plasmonic Probes and Smart Superhydrophobic Devices, New Tools for Forthcoming Spectroscopies at the Nanoscale. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Structures for Optics and Photonics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9133-5_8

Download citation

Publish with us

Policies and ethics