Skip to main content

Plasmonic Sensors for Aromatic Hydrocarbon Detection

  • Conference paper
  • First Online:
Book cover Nano-Structures for Optics and Photonics

Abstract

The development of innovative materials for sensitive and selective gas sensing is a very relevant field for the current nanotechnology research. A strong effort is dedicated to the fabrication of low-cost and efficient nanoscale devices capable of a fast detection. Resistive electrical devices are the most adopted solutions for in-situ and real-time detection, but their main drawbacks are the low selectivity, response drift, electromagnetic noise dependence and need of contact measurements. Optical gas sensors allow to overcome such limits, and could moreover exhibit thermal and mechanical stability, operate at room temperature, and be integrated on-chip. Within this framework, plasmon-based optical devices are knowing an increasing development and diffusion. Herein plasmonic sensors for aromatic hydrocarbon detection are presented. These systems are based on aryl-bridged polysilsesquioxanes (aryl-PSQs), obtained either \(\textcircled{1}\) coupling such hybrid films with Au nanoparticles (NPs), aiming to the excitation of localized surface plasmon resonances (LSPRs), or \(\textcircled{2}\) depositing them onto metallic waveguiding layers, to form gratings supporting the propagation of surface plasmon polaritons (SPPs). Aryl-PSQs are sol-gel materials characterized by a native controlled porosity and other functionalities (Loy and Shea, Chem Rev 95:1431–1442, 1995; Dabrowski et al., Appl Surf Sci 253:5747–5751, 2007; Brigo et al., Nanotechnology 23:325302, 2012). Temperature programmed desorption investigations of xylene on phenyl-bridged (ph-PSQ) and diphenyl-bridged (diph-PSQ) PSQ films indicate a specific ππ interaction between the organic component of the films and xylene molecules: the interaction energy is quantified in 38 ± 14 kJ/mol and 115 ± 13 kJ/mol, respectively (Brigo et al., J Mater Chem C 1:4252, 2013). For type \(\textcircled{1}\) sensors, a thin film of aryl-PSQ was deposited on a submonolayer of Au NPs coating a fused silica substrate. These sensors were tested monitoring the variation of the LSPRs under cycles of exposure to N2 and to 30 ppm xylene in N2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Brigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Brigo, L. et al. (2015). Plasmonic Sensors for Aromatic Hydrocarbon Detection. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Structures for Optics and Photonics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9133-5_38

Download citation

Publish with us

Policies and ethics