Skip to main content

Localized Light-Matter Interactions with Optical Antennas

  • Conference paper
  • First Online:
Nano-Structures for Optics and Photonics

Abstract

Standard far-field optical elements, such as lenses and mirrors, are only capable of localizing radiation to about half-a-wavelength—the Abbe criterion. Optical antennas facilitate the further localization of radiation into arbitrarily small spatial volumes. Combining the optical antenna with traditional optical microscopy, a technique termed near-field scanning optical microscopy (NSOM), has enabled the study of biological and solid-state samples at high spatial resolution. Since the development of NSOM in the 1980s, the biggest challenge to researchers has been the design and fabrication of optical antennas functioning as optical near-field probes. We have recently made much progress in the development of widely applicable, and reproducible, optical antennas that provide a high degree of spatial localization. Beyond NSOM, we also explore the electrical excitation, as opposed to photo excitation, of optical antennas with a scanning tunneling microscope (STM). We demonstrate a two-step plasmon-mediated energy conversion from a tunneling current to propagating photons in a smooth gold film as well an extended gold nanowire. We prove that highly localized gap plasmons are first excited in the tunnel gap, which can then couple to propagating plasmons. We elaborate on the role of gap plasmons in explaining the huge variations seen in photon emission yields in the field of STM light emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv f Mikroskop Anat 9:413

    Article  Google Scholar 

  2. Rayleigh L (1896) On the theory of optical images with special reference to the optical microscope. Phil Mag 5(42):167–195

    Article  Google Scholar 

  3. Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Phot 1:438–483

    Article  Google Scholar 

  4. Xie XS, Trautman JK (1998) Optical studies of single molecules at room temperature. Annu Rev Phys Chem 49:441–480

    Article  ADS  Google Scholar 

  5. Specht M, Pedarning JD, Heckl WM, Hänsch TW (1992) Scanning plasmon near-field microscope. Phys Rev Lett 68:476–479

    Article  ADS  Google Scholar 

  6. Xia Y (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30:338

    Article  Google Scholar 

  7. Höppener C, Novotny L (2008) Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. Nano Lett 8:642–646

    Article  ADS  Google Scholar 

  8. Höppener C, Beams R, Novotny L (2009) Background suppression in near-field optical imaging. Nano Lett 9:903–908

    Article  ADS  Google Scholar 

  9. Lapin ZJ, Christiane H, Gelbard HA, Lukas N (2012) Near-field quantification of complement receptor 1 (cr1/cd35) protein clustering in human erythrocytes. J Neuroimmune Pharmacol 7(3):539–543

    Article  Google Scholar 

  10. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single molecule fluorescence. Phys Rev Lett 96:113002

    Article  ADS  Google Scholar 

  11. Bharadwaj P, Beams R, Novotny L (2011) Nanoscale spectroscopy with optical antennas. Chem Sci 2:136–140

    Article  Google Scholar 

  12. Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. Phys Rev Lett 92:2004

    Article  Google Scholar 

  13. Cançado LG, Hartschuh A, Novotny L (2009) Tip enhanced Raman scattering of carbon nanotubes. J Raman Spectrosc 40:1420–1426

    Article  ADS  Google Scholar 

  14. Johnson TW, Lapin ZJ, Ryan B, Lindquist NC, Rodrigo SG, Lukas N, Sang-Hyun O (2012) Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids. ACS Nano 6(10):9168–9174

    Article  Google Scholar 

  15. Palomba S, Danckwerts M, Novotny L (2009) Nonlinear plasmonics with gold nanoparticle antennas. J Opt A Pure Appl Opt 11:114030

    Article  ADS  Google Scholar 

  16. Deutsch B, Hillenbrand R, Novotny L (2010) Visualizing the optical interaction tensor of a gold nanoparticle pair. Nano Lett 10:652–656

    Article  ADS  Google Scholar 

  17. Deutsch B, Hillenbrand R, Novotny L (2008) Near-field amplitude and phase recovery using phase-shifting interferometry. Opt Express 16:494–501

    Article  ADS  Google Scholar 

  18. Schnell M, Garcia-Etxarri A, Huber AJ, Crozier KB, Borisov A, Aizpurua J, Hillenbrand R (2010) Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy. J Phys Chem C 114(16):7341–7345

    Article  Google Scholar 

  19. Stiegler JM, Abate Y, Cvitkovic A, Romanyuk YE, Huber AJ, Leone SR, Hillenbrand R (2011) Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy. ACS Nano 5(8):6494–6499

    Article  Google Scholar 

  20. Novotny L (2007) The history of near-field optics. Prog Opt 50:137–180

    Article  Google Scholar 

  21. McMullan D (1990) The prehistory of scanned image microscopy. Part I: scanned optical microscopes. Proc Roy Microsc Soc 25(2):127–131

    Google Scholar 

  22. Pohl DW (2004) Optics at the nanometre scale. Phil Trans R Soc Lond A 362:701–717

    Article  ADS  Google Scholar 

  23. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180

    Article  ADS  Google Scholar 

  24. Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55:726

    Google Scholar 

  25. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930

    Article  ADS  Google Scholar 

  26. Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy: image recording with resolution l=20. Appl Phys Lett 44:651–653

    Article  ADS  Google Scholar 

  27. Fischer UC, Pohl DW (1989) Observation on single-particle plasmons by near-field optical microscopy. Phys Rev Lett 62:458–461

    Article  ADS  Google Scholar 

  28. Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98:266802

    Article  ADS  Google Scholar 

  29. Kalkbrenner T, Ramstein M, Mlynek J, Sandoghdar V (2001) A single gold particle as a probe for apertureless scanning near-field optical microscopy. J Microsc 202:72–76

    Article  MathSciNet  Google Scholar 

  30. Christiane H, Zachary L, Palash B, Lukas N (2012) Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. Phys Rev Lett 109(1):017402

    Article  Google Scholar 

  31. Novotny L, Bian RX, Xie XS (1997) Theory of nanometric optical tweezers. Phys Rev Lett 79:645–648

    Article  ADS  Google Scholar 

  32. Novotny L, Sanchez EJ, Xie XS (1998) Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams. Ultramicroscopy 71:21–29

    Article  Google Scholar 

  33. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106:874–881

    Article  MathSciNet  ADS  Google Scholar 

  34. Räther H (1965) Solid state excitations by electrons. In: Springer tracts in modern physics, vol 38. Springer, Berlin, pp 84–157

    Google Scholar 

  35. Bashevoy MV, Jonsson F, Krasavin AV, Zheludev NI, Chen Y, Stockman MI (2006) Generation of traveling surface plasmon waves by free-electron impact. Nano Lett 6:1113–1115

    Article  ADS  Google Scholar 

  36. Vesseur EJR, de Waele R, Kuttge M, Polman A (2007) Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett 7:2843–2846

    Article  ADS  Google Scholar 

  37. Cai W, Sainidou R, Xu J, Polman A, Garcia de Abajo FJ (2009) Efficient generation of propagating plasmons by electron beams. Nano Lett 9:1176–1181

    Article  ADS  Google Scholar 

  38. Jaysen N, Mathieu K, Stéphan O, García de Abajo FJ, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán LM, Colliex C (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3:348–353

    Article  Google Scholar 

  39. Kuttge M, Vesseur EJR, Polman A (2009) Fabry-Pérot resonators for surface plasmon polaritons probed by cathodoluminescence. Appl Phys Lett 94:183104

    Article  ADS  Google Scholar 

  40. Lambe J, McCarthy SL (1976) Light emission from inelastic electron tunneling. Phys Rev Lett 37:923

    Article  ADS  Google Scholar 

  41. Gimzewski JK, Reihl B, Coombs JH, Schlittler RR (1988) Photon emission with the scanning tunneling microscope. Z Phys B 72:497–501

    Article  ADS  Google Scholar 

  42. Coombs J, Gimzewski J, Reihl B, Sass J (1988) Photon emission experiments with the scanning tunnelling microscope. J Microsc 152:325–336

    Article  Google Scholar 

  43. Johansson P, Monreal R, Peter A (1990) Theory for light emission from a scanning tunneling microscope. Phys Rev B 42:9210–9213

    Article  ADS  Google Scholar 

  44. Berndt R, Gimzewski JK, Johansson P (1991) Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. Phys Rev Lett 67:3796–3799

    Article  ADS  Google Scholar 

  45. Uehara Y, Kimura Y, Ushioda S, Takeuchi K (1992) Theory of visible light emission from scanning tunneling microscope. Jpn J Appl Phys 31:2465–2469

    Article  ADS  Google Scholar 

  46. Takeuchi K, Uehara Y, Ushioda S, Morita S (1991) Prism? Coupled light emission from a scanning tunneling microscope. J Vac Sci Technol B 9:557–560

    Article  Google Scholar 

  47. Bharadwaj P, Novotny L (2011) Robustness of quantum dot power-law blinking. Nano Lett 11:2137–2141

    Article  ADS  Google Scholar 

  48. Walmsley DG, Tan T-S, Dawson P (2004) Light emission from gold and silver thin films in a scanning tunneling microscope: role of contamination and interpretation of grain structure in photon maps. Surf Sci 572(23):497–520

    Article  ADS  Google Scholar 

  49. Silly F, Gusev AO, Taleb A, Pileni M-P, Charra F (2002) Single nanoparticle manipulation with simultaneously recorded stm-induced light emission. Mater Sci Eng C 19(12):193–195

    Article  Google Scholar 

  50. Perronet K, Barbier L, Charra F (2004) Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope. Phys Rev B 70:201405

    Article  ADS  Google Scholar 

  51. Uemura T, Akai-Kasaya M, Saito A, Aono M, Kuwahara Y (2008) Spatially resolved detection of plasmon-enhanced fluorescence using scanning tunneling microscopy. Surf Interface Anal 40(6-7):1050–1053

    Article  Google Scholar 

  52. Fujita D, Onishi K, Niori N (2004) Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes. Microsc Res Tech 64(5–6):403–414

    Article  Google Scholar 

  53. Gonzalez JI, Lee T-H, Barnes MD, Antoku Y, Dickson RM (2004) Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature. Phys Rev Lett 93:147402

    Article  ADS  Google Scholar 

  54. Tae-Hee L, Gonzalez JI, Dickson RM (2002) Strongly enhanced field-dependent single-molecule electroluminescence. Proc Natl Acad Sci U S A 99(16):10272–10275

    Article  Google Scholar 

  55. Tae-Hee L, Dickson RM (2003) Single-molecule leds from nanoscale electroluminescent junctions. J Phys Chem B 107(30):7387–7390

    Article  Google Scholar 

  56. Divitt S, Bharadwaj P, Novotny L (2013) The role of gap plasmons in light emission from tunnel junctions. Opt Express 21(22):27452–27459

    Article  Google Scholar 

  57. Mitra J, Lei F, Boyle MG, Dawson P (2009) Electromagnetic interaction between a metallic nanoparticle and surface in tunnelling proximitymodelling and experiment. J Phys D Appl Phys 42(21):215101

    Article  ADS  Google Scholar 

  58. Boyle MG, Mitra J, Dawson P (2009) Infrared emission from tunneling electrons: the end of the rainbow in scanning tunneling microscopy. Appl Phys Lett 94(23):233118

    Article  ADS  Google Scholar 

  59. Dawson P, Boyle MG (2006) Light emission from scanning tunnelling microscope on polycrystalline Au films? What is happening at the single-grain level? J Opt A Pure Appl Opt 8:S219

    Article  ADS  Google Scholar 

  60. Branscheid R, Jacobsen V, Kreiter M (2007) STM induced light from nontrivial metal structures: local variations in emission efficiency. Surf Sci 602:176

    Article  ADS  Google Scholar 

  61. Park JH, Nagpal P, McPeak KM, Lindquist NC, Oh S-H, Norris DJ (2013) Fabrication of smooth patterned structures of refractory metals, semiconductors, and oxides via template stripping. ACS Appl Mater Interfaces 5(19):9701–9708

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support by the Swiss National Science Foundation (grant 200021_149433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary J. Lapin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lapin, Z.J., Bharadwaj, P., Divitt, S., Novotny, L. (2015). Localized Light-Matter Interactions with Optical Antennas. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Structures for Optics and Photonics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9133-5_3

Download citation

Publish with us

Policies and ethics