Skip to main content

Light Element Group 13–14 Clathrate Phases

  • Chapter
  • First Online:
The Physics and Chemistry of Inorganic Clathrates

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 199))

Abstract

There has been a renewed interest in clathrate compounds composed of light elements as promising thermoelectric materials due to their potential for chemical tuning. Clathrate structures are ideal frameworks for investigating the phonon glass electron crystal (PGEC) model for efficient band engineering. In this model, the guest atom provides for phonon scattering (phonon glass) to reduce thermal conductivity while tuning the chemical composition of the framework allows for control over electronic transport (electron crystal). This chapter provides an overview of the synthesis, structure, and properties of light element group 13-Si compounds with the clathrate structure. The primary focus will be on alkali and alkaline earth metal containing clathrates, A8ExSi46−x (A = Sr, Ba, Eu, Na, K; E = B, Al, Ga). Additionally, hydrogen capacity in Si clathrate structures will be presented. By reviewing the current status of the field, we will demonstrate the potential of these materials for electronic and thermoelectric applications and new avenues for research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.B. Iversen, A.E.C. Palmqvist, D.E. Cox, G.S. Nolas, G.D. Stucky, N.P. Blake, H. Metiu, J. Solid State Chem. 149(2), 455–458 (2000)

    Article  Google Scholar 

  2. Y. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilscher, C. Godart, H. Noel, J. Phys. Condens. Matter 14(34), 7991–8004 (2002)

    Article  Google Scholar 

  3. Y. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilscher, C. Godart, H. Noel, A. Saccone, R. Ferro, Phys. B-Condens. Matter 328(1–2), 44–48 (2003)

    Article  Google Scholar 

  4. M. Christensen, S. Johnsen, B.B. Iversen, Dalton Trans. 39(4), 978–992 (2010)

    Article  Google Scholar 

  5. T.F. Fassler, S. Hoffmann, Zeitschrift Fur Kristallographie 214(11), 722–734 (1999)

    Article  Google Scholar 

  6. M. Beekman, G.S. Nolas, J. Mater. Chem. 18(8), 842–851 (2008)

    Google Scholar 

  7. S. Yamanaka, Dalton Trans. 39(8), 1901–1915 (2010)

    Article  Google Scholar 

  8. A.V. Shevelkov, K. Kovnir, Z. Clathrates, in Zintl Phases: Principles and Recent Developments, vol. 139, ed. by T.F. Fassler, Structure and Bonding (Springer, Berlin, 2011), pp. 97–142

    Google Scholar 

  9. D. Neiner, N.L. Okamoto, C.L. Condron, Q.M. Ramasse, P. Yu, N.D. Browning, S.M. Kauzlarich, J. Am. Chem. Soc. 129(45), 13857–13862 (2007)

    Article  Google Scholar 

  10. D. Neiner, N.L. Okamoto, P. Yu, S. Leonard, C.L. Condron, M.F. Toney, Q.M. Ramasse, N.D. Browning, S.M. Kauzlarich, Inorg. Chem. 49(3), 815–822 (2010)

    Article  Google Scholar 

  11. T. Langer, S. Dupke, H. Trill, S. Passerini, H. Eckert, R. Poettgen, M. Winter, J. Electrochem. Soc. 159(8), A1318–A1322 (2012)

    Article  Google Scholar 

  12. G.B. Adams, M. Okeeffe, A.A. Demkov, O.F. Sankey, Y.M. Huang, Phys. Rev. B 49(12), 8048–8053 (1994)

    Article  Google Scholar 

  13. Y. Imai, M. Imai, J. Alloy. Compd. 509(9), 3924–3930 (2011)

    Article  Google Scholar 

  14. K. Kishimoto, N. Ikeda, K. Akail, T. Koyanagi, Appl. Phys. Exp. 1(3), 031201 (2008)

    Article  Google Scholar 

  15. H. Shimizu, Y. Takeuchi, T. Kume, S. Sasaki, K. Kishimoto, N. Ikeda, T. Koyanagi, J. Alloy. Compd. 487(1–2), 47–51 (2009)

    Article  Google Scholar 

  16. N. Tsujii, J.H. Roudebush, A. Zevalkink, C.A. Cox-Uvarov, G.J. Snyder, S.M. Kauzlarich, J. Solid State Chem. 184(5), 1293–1303 (2011)

    Article  Google Scholar 

  17. J.H. Roudebush, N. Tsujii, A. Hurtando, H. Hope, Y. Grin, S.M. Kauzlarich, Inorg. Chem. 51(7), 4161–4169 (2012)

    Article  Google Scholar 

  18. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, D.M. Rowe, J. Appl. Phys. 87(11), 7871–7875 (2000)

    Article  Google Scholar 

  19. W. Carrillo-Cabrera, R.C. Gil, Y. Grin, Z. Kristallogr. New Crystal Struct. 217(2), 179–180 (2002)

    Google Scholar 

  20. L.Y. Qiu, I.P. Swainson, G.S. Nolas, M.A. White, Phys. Rev. B 70(3), 035208 (2004)

    Article  Google Scholar 

  21. A. Bentien, B.B. Iversen, J.D. Bryan, G.D. Stucky, A.E.C. Palmqvist, A.J. Schultz, R.W. Henning, J. Appl. Phys. 91(9), 5694–5699 (2002)

    Article  Google Scholar 

  22. C.L. Condron, R. Porter, T. Guo, S.M. Kauzlarich, Inorg. Chem. 44(25), 9185–9191 (2005)

    Article  Google Scholar 

  23. C.L. Condron, S.M. Kauzlarich, F. Gascoin, G.J. Snyder, Chem. Mater. 18(20), 4939–4945 (2006)

    Article  Google Scholar 

  24. C.L. Condron, S.M. Kauzlarich, Inorg. Chem. 46(7), 2556–2562 (2007)

    Article  Google Scholar 

  25. R. Kroner, K. Peters, H.G. von Schnering, R. Nesper, Z. Kristallogr.-New Crystal Struct. 213(4), 667–668 (1998)

    Google Scholar 

  26. H.G. von Schnering, R. Kroner, H. Menke, K. Peters, R. Nesper, Z. Kristallogr.-New Crystal Struct. 213(4), 677–678 (1998)

    Google Scholar 

  27. M. Imai, A. Sato, H. Udono, Y. Imai, H. Tajima, Dalton Trans. 40(16), 4045–4047 (2011)

    Article  Google Scholar 

  28. K. Nakamura, S. Yamada, T. Ohnuma, Mat. Trans. 54(3):276–285 (2013)

    Google Scholar 

  29. C.L. Condron, S.M. Kauzlarich, T. Ikeda, G.J. Snyder, F. Haarmann, P. Jeglic, Inorg. Chem. 47(18), 8204–8212 (2008)

    Article  Google Scholar 

  30. W. Jung, J. Loerincz, R. Ramlau, H. Borrmann, Y. Prots, F. Haarmann, W. Schnelle, U. Burkhardt, M. Baitinger, Y. Grin, Angew. Chem. Int. Ed. 46(35), 6725–6728 (2007)

    Article  Google Scholar 

  31. B. Eisenmann, H. Schafer, R. Zagler, J. Less-Common Metals 118(1), 43–55 (1986)

    Article  Google Scholar 

  32. K. Suekuni, M.A. Avila, K. Umeo, T. Takabatake, Phys. Rev. B 75, 195210 (2007)

    Google Scholar 

  33. J.H. Roudebush, E.S. Toberer, H. Hope, G.J. Snyder, S.M. Kauzlarich, J. Solid State Chem. 184(5), 1176–1185 (2011)

    Article  Google Scholar 

  34. R.A. Ribeiro, M.A. Avila, Philos. Mag. 92(19–21), 2492–2507 (2012)

    Article  Google Scholar 

  35. W. Gou, S.Y. Rodriguez, Y. Li, J. Ross, H. Joseph, Phys. Rev. B 80, 144108 (2009)

    Article  Google Scholar 

  36. C.L. Condron, J. Martin, G.S. Nolas, P.M.B. Piccoli, A.J. Schultz, S.M. Kauzlarich, Inorg. Chem. 45(23), 9381–9386 (2006)

    Article  Google Scholar 

  37. J.H. Roudebush, C. de la Cruz, B.C. Chakoumakos, S.M. Kauzlarich, Inorg. Chem. 51(3), 1805–1812 (2012)

    Article  Google Scholar 

  38. M. Christensen, B.B. Iversen, Chem. Mater. 19(20), 4896–4905 (2007)

    Article  Google Scholar 

  39. H. Anno, M. Hokazono, R. Shirataki, Y. Nagami, J. Mater. Sci. 48(7), 2846–2854 (2013)

    Article  Google Scholar 

  40. D. Nataraj, J. Nagao, M. Ferhat, T. Ebinuma, J. Appl. Phys. 93(5), 2423–2428 (2003)

    Article  Google Scholar 

  41. S.-K. Deng, X.-F. Tang, R.-S. Tang, Chin. Phys. B 18(7), 3084–3086 (2009)

    Article  Google Scholar 

  42. H. Anno, H. Yamada, T. Nakabayashi, M. Hokazono, R. Shirataki, J. Solid State Chem. 193, 94–104 (2012)

    Article  Google Scholar 

  43. D. Neiner, S.M. Kauzlarich, Chem. Mater. 22(2), 487–493 (2010)

    Article  Google Scholar 

  44. X. Ma, F. Xu, T.M. Atkins, A.M. Goforth, D. Neiner, A. Navrotsky, S.M. Kauzlarich, Dalton Trans. (46), 10250–10255

    Google Scholar 

  45. M. Pouchard, C. Cros, P. Hagenmuller, E. Reny, A. Ammar, M. Menetrier, J.M. Bassat, Solid State Sci. 4(5), 723–729 (2002)

    Article  Google Scholar 

  46. G.K. Ramachandran, J.J. Dong, J. Diefenbacher, J. Gryko, R.F. Marzke, O.F. Sankey, P.F. McMillan, J. Solid State Chem. 145(2), 716–730 (1999)

    Article  Google Scholar 

  47. H. Lee, J.W. Lee, D.Y. Kim, J. Park, Y.T. Seo, H. Zeng, I.L. Moudrakovski, C.I. Ratcliffe, J.A. Ripmeester, Nature 434(7034), 743–746 (2005)

    Article  Google Scholar 

  48. G.K. Ramachandran, P.F. McMillan, J. Diefenbacher, J. Gryko, J.J. Dong, O.F. Sankey, Phys. Rev. B 60(17), 12294–12298 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Kauzlarich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kauzlarich, S.M., Sui, F. (2014). Light Element Group 13–14 Clathrate Phases. In: Nolas, G. (eds) The Physics and Chemistry of Inorganic Clathrates. Springer Series in Materials Science, vol 199. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9127-4_8

Download citation

Publish with us

Policies and ethics