Skip to main content

Taxonomy and Phylogeny of Prokaryotes

  • Chapter
  • First Online:
Environmental Microbiology: Fundamentals and Applications

Abstract

Classification of prokaryotes is hierarchically organized into seven levels: kingdoms, phyla, classes, orders, families, genera, and species. In prokaryotes, because they reproduce by clonal fission, the species, considered as the basic unit of the biological diversity, faces several problems such as the definition of an individual. A bacterial strain can be recognized as an individual belonging to a species. However, many inconsistencies exist between phenotypic similarity levels and evolutionary relationships deduced from molecular phylogenies. Most taxonomic groups have been reconsidered through phylogenetic analysis in the 1980s, and a consensus has been reached on the need for coherence between taxonomy and phylogeny. Thus, the multiple revisions of species, genera, or higher taxonomic levels pose many complex problems that are solved gradually. Prokaryotic microorganisms correspond to two of the three domains of life: Archaea and Bacteria. Their systematics is described in the “Bergey’s Manual for Systematic Bacteriology, second edition” published in five volumes.

In the text, the Latin terms used are those accepted by the Nomenclature Committee, and the organization of the bacterial and archaeal domains is presented as they appear in the “Bergey’s Manual for Systematic Bacteriology.” They are discussed according to the recent data of the hierarchical classification of Prokaryotes.

Chapter Coordinator

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is an iterative process linked to the ongoing discovery of new taxa in new environments or better explored. In 2002, for instance, a bacteria was described in which 16S rRNA gene did not hybridize with the “universal” primers commonly used.

References

  • Albers SV, Meyer BH (2011) The archaeal cell envelope. Nat Rev Microbiol 9:414–426

    Article  CAS  PubMed  Google Scholar 

  • Bailly X, Olivieri I, De Mita S, Cleyet-Marel J-C, Bena G (2006) Recombination and selection shape the molecular diversity pattern of nitrogen-fixing Sinorhizobium sp. associated to Medicago. Mol Ecol 15:2719–2734

    Article  CAS  PubMed  Google Scholar 

  • Bapteste E, Brochier C, Boucher Y (2005) Higher level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1:353–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A 93:9188–9193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beja O et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  CAS  PubMed  Google Scholar 

  • Boone DR, Castenholz RW (2001) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Brenner DJ, Krieg NR, Staley JT (2005) Bergey’s manual of systematic bacteriology: the proteobacteria, vol 2, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Brochier C, Gribaldo S, Zivanovic Y, Confalonieri F, Forterre P (2005) Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales. Genome Biol 6:R42

    Article  PubMed Central  PubMed  Google Scholar 

  • Brochier-Aramanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  Google Scholar 

  • Brochier-Armanet C, Forterre P, Gribaldo S (2011) Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol 14:274–281

    Article  PubMed  Google Scholar 

  • Brochier-Armanet C, Gribaldo S, Forterre P (2012) Spotlight on the Thaumarchaeota. ISME J 6:227–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cilia V, Lafay B, Christen R (1996) Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol 13:451–461

    Article  CAS  PubMed  Google Scholar 

  • Cohan FM (2001) Bacterial species and speciation. Syst Biol 50:513–524

    Article  CAS  PubMed  Google Scholar 

  • Costechareyre D, Bertolla F, Nesme X (2009) Homologous recombination in Agrobacterium: potential implications for the genomic species concept in bacteria. Mol Biol Evol 26:167–176

    Article  CAS  PubMed  Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans the consummate survivor. Nat Rev Microbiol 3:882–892

    Article  CAS  PubMed  Google Scholar 

  • Daubin V, Gouy M, Perriere G (2001) Bacterial molecular phylogeny using supertree approach. Genome Inform Ser Workshop 12:155–164

    CAS  Google Scholar 

  • de Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WD (2008) Bergey’s manual of systematic bacteriology: the firmicutes, vol 3, 2nd edn. Springer, New York

    Google Scholar 

  • Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (2006) The prokaryotes – a handbook on the biology of bacteria, vol 3, 3rd edn. Springer, New York

    Google Scholar 

  • Dybvig K, Voelker LL (1996) Molecular biology of mycoplasmas. Annu Rev Microbiol 50:25–57

    Article  CAS  PubMed  Google Scholar 

  • Elkins JG et al (2008) Akorarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci U S A 105:8102–8107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fleischmann RD et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  PubMed  Google Scholar 

  • Forterre P, Brochier C, Philippe H (2002) Evolution of the Archaea. Theor Popul Biol 61:409–422

    Article  PubMed  Google Scholar 

  • Fox GE et al (1980) The phylogeny of prokaryotes. Science 209:457–463

    Article  CAS  PubMed  Google Scholar 

  • Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746

    Article  CAS  PubMed  Google Scholar 

  • Gevers D et al (2005) Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (2012) Bergey’s manual of systematic bacteriology: the actinobacteria, vol 5, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  CAS  PubMed  Google Scholar 

  • Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci 361:1007–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grimont PA (1988) Use of DNA reassociation in bacterial classification. Can J Microbiol 34:541–546

    Article  CAS  PubMed  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Caumette P (2004) Recommended standards for the description of new species of anoxygenic phototrophic bacteria. Int J Syst Evol Microbiol 54:1415–1421

    Article  PubMed  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  • Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (2011) Bergey’s manual of systematic bacteriology: the Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycete, vol 4, 2nd edn. Springer, New York

    Google Scholar 

  • Lassalle F et al (2011) Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biol Evol 3:762–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leigh JA, Albers SV, Atomi H, Allers T (2011) Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 35:577–608

    Article  CAS  PubMed  Google Scholar 

  • Linnaeus C (1753) Species plantarum. Stockholm. Holmiae: Impensis Laurentii Salvii

    Google Scholar 

  • Lopez-Garcia P, Moreira D (2008) Tracking microbial biodiversity through molecular and genomic ecology. Res Microbiol 159:67–73

    Article  CAS  PubMed  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New York

    Google Scholar 

  • Mougel C, Thioulouse J, Perriere G, Nesme X (2002) A mathematical method for determining genome divergence and species delineation using AFLP. Int J Syst Evol Microbiol 52:573–586

    CAS  PubMed  Google Scholar 

  • Murray RG, Stackebrandt E (1995) Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45:186–187

    Article  CAS  PubMed  Google Scholar 

  • Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE (2011) De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:81–93

    Article  PubMed Central  PubMed  Google Scholar 

  • Normand P, Lalonde M (1982) Evaluation of Frankia strains isolated from provenances of two Alnus species. J Can Microbiol 28:1133–1142

    Article  Google Scholar 

  • Ochman H, Elwyn S, Moran NA (1999) Calibrating bacterial evolution. Proc Natl Acad Sci U S A 96:12638–12643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paul K, Nonoh JO, Mikulski L, Brune A (2012) “Methanoplasmatales”, Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78:8245–8253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Podar M, Makarova KS, Graham DE, Wolf YI, Koonin EV, Reysenbach AL (2013) Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biol direct, Apr 22; 8-9. doi:10.1186/1745-6150-8-9

  • Polzin KM, McKay LL (1991) Identification, DNA sequence, and distribution of IS981, a new, high-copynumber insertion sequence in lactococci. Appl Environ Microbiol 57:734–743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rainey FA, Ward-Rainey NL, Janssen PH, Hippe H, Stackebrandt E (1996) Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 142:2087–2095

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated Archaea. Nat Rev Microbiol 3:479–488

    Article  CAS  PubMed  Google Scholar 

  • Stacey G, Bottomley PJ, van Baalen C, Tabita FR (1979) Control of heterocyst and nitrogenase synthesis in Cyanobacteria. J Bacteriol 137:321–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Stackebrandt E, Liesack W, Goebel BM (1993) Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J 7:232–236

    CAS  PubMed  Google Scholar 

  • Stackebrandt E et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR (2007) The birth of the Archaea: a personal retrospective. In: Garrett RA, Klenk HP (eds) Archaea: evolution, physiology, and molecular biology. Blackwell publishing, Oxford, pp 1–15

    Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yap WH, Zhang Z, Wang Y (1999) Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 181:5201–5209

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Websites

http://www.bacterio.cict.fr/classificationgenera.html. This site is managed by Jean Euzéby of the ENV Toulouse; it maintains bacterial taxonomy entries based on the publications validly made in journals of bacterial taxonomy.

http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy. This site is managed by the American NCBI. It is complementary to the first; however, it incorporates several nonvalid taxa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Caumette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Caumette, P., Brochier-Armanet, C., Normand, P. (2015). Taxonomy and Phylogeny of Prokaryotes. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_6

Download citation

Publish with us

Policies and ethics