Skip to main content

Contributions of Descriptive and Functional Genomics to Microbial Ecology

  • Chapter
  • First Online:

Abstract

Originally, “genomics” was used only to describe a scientific discipline which consisted in mapping, sequencing, and analyzing genomes. Nowadays, this term is widely used by a growing number of people in a broader sense to describe global techniques for studying genomes including from a functional point of view. These include the analysis of messenger RNAs (transcriptomics), protein contents (proteomics), and metabolites (metabolomics). At a higher level of complexity, it also describes the so-called “meta” approaches that allow to investigate the ecology of microbial communities, including uncultured microorganisms. Based on the use of recent technological developments, the numerous examples provide an integrated view of how microorganisms adapt to particular ecological niches and participate in the dynamics of ecosystems.

Coordinator

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  • Alloisio N et al (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact 23:593–607

    Article  CAS  PubMed  Google Scholar 

  • Arsène-Ploetze F et al (2010) Structure, function and evolution of Thiomonas spp. inferred from genome sequencing and comparative genomic analysis. PLoS Genet 6:e1000859

    Article  PubMed Central  PubMed  Google Scholar 

  • Arsène-Ploetze F, Carapito C, Plewniak F, Bertin PN (2012) Proteomics as a tool for the characterization of microbial isolates and complex communities. In: Heazlewood J, Petzold CJ (eds) Proteomic applications in biology. InTech, Croatia, pp 69–92

    Google Scholar 

  • Bailly X, Olivieri I, De Mita S, Cleyet-Marel JC, Bena G (2006) Recombination and selection shape the molecular diversity pattern of nitrogen-fixing Sinorhizobium sp. associated to Medicago. Mol Ecol 15:2719–2734

    Article  CAS  PubMed  Google Scholar 

  • Beja O et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 5486:1902–1906

    Article  Google Scholar 

  • Beliaev AS et al (2005) Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol 20:7138–7145

    Article  Google Scholar 

  • Bentley SD et al (2003) Sequencing and analysis of the genome of the Whipple’s disease bacterium Tropheryma whipplei. Lancet 361:637–644

    Article  CAS  PubMed  Google Scholar 

  • Bertin PN, Médigue C, Normand P (2008) Advances in environmental genomics: towards an integrated view of micro-organisms and ecosystems. Microbiology 154:347–359

    Article  CAS  PubMed  Google Scholar 

  • Bertin PN et al (2011) Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 5:1735–1747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Gianinazzi S (2004) Proteomics as a tool to monitor plant-microbe endosymbiosis in the rhizosphere. Mycorrhiza 14:1–10

    Article  CAS  PubMed  Google Scholar 

  • Blattner FR et al (1997) The complete genome sequence of Escherichia coli K-12. Science 5:1453–1474

    Article  Google Scholar 

  • Bru C, Courcelle E, Carrere S, Beausse Y, Dalmar S, Kahn D (2005) The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res 3(Database issue):D212–D215

    Google Scholar 

  • Carapito C et al (2006) Identification of genes and proteins involved in the pleiotropic response to arsenic stress in Caenibacter arsenoxydans, a metalloresistant beta-proteobacterium with an unsequenced genome. Biochimie 88:595–606

    Article  CAS  PubMed  Google Scholar 

  • Chain P et al (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185:2759–2773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Terai M, Fu L, Herrero R, DeSalle R, Burk RD (2005) Diversifying selection in human papillomavirus type 16 lineages based on complete genome analyses. J Virol 79:7014–7023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cleiss-Arnold J et al (2010) Temporal transcriptomic response during arsenic stress in Herminiimonas arsenicoxydans. BMC Genomics 11:709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cole ST et al (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Coppée JY (2008) Do DNA microarrays have their future behind them? Microbes Infect 10:1067–1071

    Article  PubMed  Google Scholar 

  • Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619–624. PMCID: PMC3025319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daubin V, Ochman H (2004a) Recognizing lateral gene transfer by quartet mapping. Mol Biol Evol 21:48–51

    Google Scholar 

  • Daubin V, Ochman H (2004b) Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res 14:1036–1042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daubin V, Lerat E, Perriere G (2003) The source of laterally transferred genes in bacterial genomes. Genome Biol 21:48–51

    Google Scholar 

  • Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  CAS  PubMed  Google Scholar 

  • De-Vriendt K, Sandra K, Desmet T, Nerinckx W, Van Beeumen J, Devreese B (2004) Evaluation of automated nano-electrospray mass spectrometry in the determination of non-covalent protein-ligand complexes. Rapid Commun Mass Spectrom 18:3061–3067

    Article  CAS  PubMed  Google Scholar 

  • Dougherty MJ, D’haeseleer P, Simmons BA, Adams PD, Hadi MZ (2012) Glycoside hydrolases from a targeted compost metagenome, activity-screening and functional characterization. BMC Biotechnol 12:38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eberly JO, Ely RL (2008) Thermotolerant hydrogenases: biological diversity, properties, and biotechnological applications. Crit Rev Microbiol 34:117–130

    Article  CAS  PubMed  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann RD et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae. Science 269:496–512

    Article  CAS  PubMed  Google Scholar 

  • Gil R, Sabater-Munoz B, Latorre A, Silva FJ, Moya A (2002) Extreme genome reduction in Buchnera spp.: toward the minimal genome needed for symbiotic life. Proc Natl Acad Sci U S A 99:4454–4458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giovannoni SJ et al (2005) Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438:82–85

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Consarnau L et al (2010) Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol 8:e1000358

    Article  PubMed Central  PubMed  Google Scholar 

  • Halter D et al (2012) In situ proteo-metabolomics revealed metabolite secretion by the acid mine drainage bioindicator, Euglena mutabilis. ISME J 6:1391–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hecker M, Volker U (2004) Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Proteomics 4:3727–3750

    Article  CAS  PubMed  Google Scholar 

  • Hocher V et al (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (eds) (1994) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Hou S et al (2004) Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci U S A 101:18036–18041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3:281–294

    Article  CAS  PubMed  Google Scholar 

  • Johnson E, Baron D, Naranjo B, Bond D, Schmidt-Dannert C, Gralnick J (2010) Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl Environ Microbiol 76:4123–4129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jungblut PR (2001) Proteome analysis of bacterial pathogens. Microbes Infect 3:831–840

    Article  CAS  PubMed  Google Scholar 

  • Kahn P (1995) From genome to proteome: looking at a cell’s proteins. Science 270:369–370

    Article  CAS  PubMed  Google Scholar 

  • Kim ST et al (2004) Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569–3578

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Article  CAS  PubMed  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 7058:543–546

    Article  Google Scholar 

  • Kunst F et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 20:249–256

    Article  Google Scholar 

  • Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Liedert C et al (2010) Two-dimensional proteome reference map for the radiation-resistant bacterium Deinococcus geothermalis. Proteomics 10:555–563

    Article  CAS  PubMed  Google Scholar 

  • Liu Z et al (2005) Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora infestans. Mol Biol Evol 22:659–672

    Article  CAS  PubMed  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto N, Yoshinaga H, Ohmura N, Ando A, Saiki H (2000) High density cultivation of two strains of iron-oxidizing bacteria through reduction of ferric iron by intermittent electrolysis. Biotechnol Bioeng 70:464–466

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki M et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  CAS  PubMed  Google Scholar 

  • Médigue C et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. 1. Genome Res 15:1325–1335

    Article  PubMed Central  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Moretti M et al (2010) A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35. Proteomics 10:3292–3320

    Article  CAS  PubMed  Google Scholar 

  • Mulder NJ et al (2005) InterPro, progress and status in 2005. Nucleic Acids Res 33(Database issue):D201–D205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller D et al (2007) A tale of two oxydation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:e53

    Article  PubMed Central  PubMed  Google Scholar 

  • Nadon R, Shoemaker J (2002) Statistical issues with microarrays: processing and analysis. Trends Genet 18:265–271

    Article  CAS  PubMed  Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    Article  CAS  PubMed  Google Scholar 

  • Narasingarao P et al (2012) De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:81–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noel-Georis I et al (2004) Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response. Proteomics 4:151–179

    Article  CAS  PubMed  Google Scholar 

  • Normand P et al (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Ou K et al (2005) Integrative genomic, transcriptional, and proteomic diversity in natural isolates of the human pathogen Burkholderia pseudomallei. J Bacteriol 187:4276–4285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parales RE, Ditty JL (2005) Laboratory evolution of catabolic enzymes and pathways. Curr Opin Biotechnol 16:315–325

    Article  CAS  PubMed  Google Scholar 

  • Pradella S, Hans A, Sproer C, Reichenbach H, Gerth K, Beyer S (2002) Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch Microbiol 178:484–492

    Article  CAS  PubMed  Google Scholar 

  • Pühler A, Ariat M, Becker A, Göttfert M, Morrissey JP, O’Gara F (2004) What can bacterial genome research teach us about bacteria-plant interaction? Curr Opin Plant Biol 7:137–147

    Article  PubMed  Google Scholar 

  • Rabilloud T (2002) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2:3–10

    Article  CAS  PubMed  Google Scholar 

  • Rhodius VA, LaRossa RA (2003) Uses and pitfalls of microarrays for studying transcriptional regulation. Curr Opin Microbiol 6:114–119

    Article  CAS  PubMed  Google Scholar 

  • Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saunders NF, Goodchild A, Raftery M, Guilhaus M, Curmi PM, Cavicchioli R (2005) Predicted roles for hypothetical proteins in the low-temperature expressed proteome of the Antarctic archaeon Methanococcoides burtonii. J Proteome Res 4:464–472

    Article  CAS  PubMed  Google Scholar 

  • Scarselli M, Giuliani MM, Adu-Bobie J, Pizza M, Rappuoli R (2005) The impact of genomics on vaccine design. Trends Biotechnol 23:84–91

    Article  CAS  PubMed  Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488

    Article  CAS  PubMed  Google Scholar 

  • Schmid MB (2004) Seeing is believing: the impact of structural genomics on antimicrobial drug discovery. Nat Rev Microbiol 2:739–746

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J et al (2004) Quality assessment of the human genome sequence. Nature 429:365–368

    Article  CAS  PubMed  Google Scholar 

  • Siew N, Fischer D (2003) Twenty thousand ORFan microbial protein families for the biologist? Structure 11:7–9

    Article  CAS  PubMed  Google Scholar 

  • Stewart FJ, Dmytrenko O, DeLong EF, Cavanaugh CM (2011) Metatranscriptomic analysis of sulfur oxidation genes in the endosymbiont of Solemya velum. Front Microbiol 2:1–10

    Article  Google Scholar 

  • Streit WR, Schmitz RA (2004) Metagenomics – the key to the uncultured microbes. Curr Opin Microbiol 7:492–498

    Article  CAS  PubMed  Google Scholar 

  • Strous M et al (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794

    Article  PubMed  Google Scholar 

  • Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J Bacteriol 180:5109–5116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tyson GW et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  PubMed  Google Scholar 

  • Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 71:6319–6324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vallenet D et al (2006) MAGE: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Ham RC et al (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci U S A 100:581–586

    Article  PubMed Central  PubMed  Google Scholar 

  • Velculescu VE et al (1997) Characterization of the yeast transcriptome. Cell 24:243–251

    Article  Google Scholar 

  • Venter JC et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Vezzi A et al (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461

    Article  CAS  PubMed  Google Scholar 

  • Walter JM, Greenfield D, Bustamante C, Liphardt J (2007) Light-powering Escherichia coli with proteorhodopsin. Proc Natl Acad Sci U S A 104:2408–2412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 17:737–738

    Article  Google Scholar 

  • Weiss S et al (2009) Enhanced structural and functional genome elucidation of the arsenite-oxidizing strain Herminiimonas arsenicoxydans by proteomics data. Biochimie 91:192–203

    Article  CAS  PubMed  Google Scholar 

  • Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6:911–920

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS (2005) Metabolomics: the principles and potential applications to transplantation. Am J Transplant 5:2814–2820

    Article  CAS  PubMed  Google Scholar 

  • Woyke T et al (2006) Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 7114:950–955

    Article  Google Scholar 

  • Yamada T et al (2012) Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours. Mol Syst Biol 8:581

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang C et al (2006) Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J Biol Chem 40:29872–29885

    Article  Google Scholar 

  • Zakrzewski M et al (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158:248–258

    Article  CAS  PubMed  Google Scholar 

  • Zylstra GJ, Kukor JJ (2005) What is environmental biotechnology. Curr Opin Biotechnol 16:243–245

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe N. Bertin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bertin, P.N., Michotey, V., Normand, P. (2015). Contributions of Descriptive and Functional Genomics to Microbial Ecology. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_18

Download citation

Publish with us

Policies and ethics