Skip to main content

Applied Microbial Ecology and Bioremediation

Microorganisms as Major Actors of Pollution Elimination in the Environment

  • Chapter
  • First Online:
Environmental Microbiology: Fundamentals and Applications

Abstract

The large diversity of metabolic capacities and the high genetic plasticity of microorganisms allow them to degrade virtually all organic compounds of natural or anthropogenic (xenobiotics) origin including those that are sources of environmental pollution. Thus microorganisms are major actors to eliminate or alleviate pollutions in the environment. The natural attenuation processes due to microbial activities (biodegradation and/or biotransformation) as well as the possibilities of using microorganisms in preventive treatments and bioremediation – biostimulation, bioaugmentation, rhizostimulation, bioleaching, and bioimmobilization – are presented. The main methods for microbial treatment of pollution, the chemical structure and the origin of the major pollutants, as well as the mechanisms of degradation by microorganisms – on the basis of physiological, biochemical, and genetic approaches – are described. Examples of treatments are presented for urban wastewater (activated sludge, lagoons, and planted beds), solid wastes (aerobic treatment or composting, anaerobic treatment and methanization, discharges), gaseous effluents, pesticides, polychlorobiphenyls, and finally hydrocarbons and petroleum products in the marine environment.

Coordinator

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasnezhad H, Gray M, Foght JM (2011) Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl Microbiol Biotechnol 92:653–675

    CAS  PubMed  Google Scholar 

  • Abramowicz DA (1990) Aerobic and anaerobic biodegradation of PCBs: a review. Crit Rev Biotechnol 10:241–251

    CAS  Google Scholar 

  • Adrian L, Dudková V, Demnerová K, Bedard DL (2009) “Dehalococcoides” sp. Strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture Arochlor 1260. Appl Environ Microbiol 75:4516–4524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alder AC, Häggblom MM, Oppenheimer SR, Young LY (1993) Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environ Sci Technol 27:530–538

    CAS  Google Scholar 

  • Alexander M (1965) Biodegradation: problems of molecular recalcitrance and microbial infallibility. Adv Appl Microbiol 7:35–80

    CAS  PubMed  Google Scholar 

  • Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extrême halophilic archaea from hypersalin coasts of the Arabian Gulf. Extremophiles 14:321–328

    CAS  PubMed  Google Scholar 

  • Alvey S, Crowley DE (1996) Survival and activity of an atrazine-mineralizing bacterial consortium in rhizosphere soil. Environ Sci Technol 30:1596–1603

    CAS  Google Scholar 

  • Amaral S (1987) Landfarming of oily wastes: design and operation. Water Sci Technol 19:75–86

    CAS  Google Scholar 

  • Anderson TA, Kruger EL, Coats JR (1994) Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant. Chemosphere 28:1551–1557

    CAS  Google Scholar 

  • Anderson TA, White DC, Walton BT (1995) Degradation of hazardous organic compounds by rhizosphere microbial communities. In: Signh VP (ed) Biotransformations: microbial degradation of health risk compounds, vol V. Elsevier Science, BV, Amsterdam, pp 205–225

    Google Scholar 

  • Anderson RT et al (2003) Stimulating in situ activity of Geobacter species to remove uranium from groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arbeli Z, Fuentes CL (2007) Accelerated biodegradation of pesticide: an overview of the phenomenon, its bias and possible solutions; and a discussion on the tropical dimension. Crop Prot 26:1733–1746

    CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbon: an environmental perspective. Microbiol Rev 45:180–209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeterior Biodegrad 35:317–327

    CAS  Google Scholar 

  • Atteia O, Guillot C (2007) Factors controlling BTEX and chlorinated solvents plume length under natural attenuation conditions. J Contam Hydrol 90:81–104

    CAS  PubMed  Google Scholar 

  • Audus LJ (1949) The biological detoxification of 2,4-dichlorophenoxyacetic acid in soil. Plant Soil 2:31–36

    CAS  Google Scholar 

  • Audus LJ (1951) The biological detoxification of hormone herbicides in soil. Plant Soil 3:170–192

    CAS  Google Scholar 

  • Ballschmister K, Zell M (1980) Analysis of PCB by glass capillary gas chromatography. Fresen J Anal Chem 302:20–31

    Google Scholar 

  • Barriuso E, Houot S, Serra-Wittling C (1997) Influence of compost addition to soil on the behaviour of herbicides. Pestic Sci 49:65–75

    CAS  Google Scholar 

  • Barton LL, Plunkett RM, Thomson BM (2003) Reduction of metals and nonessential elements by anaerobes. In: Ljungdahl LG, Adams MW, Barton LL, Ferry JG, Johnson MK (eds) Biochemistry and physiology of anaerobic bacteria. Springer, New York, pp 220–234

    Google Scholar 

  • Berthe-Corti L, Höpner T (2005) Geobiological aspects of coastal oil pollution. Paleogeogr Paleoclimatol Paleoecol 219:171–189

    Google Scholar 

  • Bertrand J-C, Rambeloarisoa E, Rontani J-F, Guisti G, Mattei G (1983) Microbial degradation of crude oil in sea water in continuous culture. Biotechnol Lett 5:567–572

    Google Scholar 

  • Bertrand J-C, Al Mallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaeabacterium. Lett Appl Microbiol 11:260–263

    CAS  Google Scholar 

  • Bertrand J-C, Bianchi M, Almallah M, Acquaviva M, Mille G (1993) Hydrocarbon biodegradation and hydrocarbonoclastic bacterial communities composition grown in seawater as a function of sodium chloride concentration. J Exp Mar Biol Ecol 168:125–138

    CAS  Google Scholar 

  • Binet P, Portal JM, Leyval C (2000) Fate of polycyclic aromatic hydrocarbons in the rhizosphere and mycorrhizosphere of ryegrass. Plant Soil 227:207–213

    CAS  Google Scholar 

  • Bocard C (2007) Marine oil spills and soils contaminated by hydrocarbons. Editions Technip, Paris

    Google Scholar 

  • Böltner D, Godoy P, Muñoz-Rojas J, Duque E, Moreno-Morillas S, Sánchez L, Ramos J-L (2008) Rhizoremediation of lindane by root-colonizing Sphingomonas. Microb Biotechnol 1:87–93

    PubMed Central  PubMed  Google Scholar 

  • Bonin P, Bertrand J-C (1998) Involvement of a bioemulsifier in heptadecane uptake in Pseudomonas aeruginosa. Chemosphere 38:1157–1164

    Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    CAS  Google Scholar 

  • Borja JQ, Auresenia JL, Gallardo SM (2006) Biodegradation of polychlorinated biphenyls using biofilm grown with biphenyl as carbon source in fluidized bed reactor. Chemosphere 64:555–559

    CAS  PubMed  Google Scholar 

  • Boubakri H, Beuf M, Simonet P, Vogel TM (2006) Development of metagenomic DNA shuffling for the construction of a xenobiotic gene. Gene 375:87–94

    CAS  PubMed  Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele J-P (1997) An interfacial uptake mechanism for the degradation of pyrene by a Rhodococcus strain. Microbiology (UK) 143:1087–1093

    CAS  Google Scholar 

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for Exxon Valdez oil spill. Nature 368:413–418

    CAS  Google Scholar 

  • Brian RC (1976) The history and classification of herbicides. In: Audus LJ (ed) Herbicides. Physiology, biochemistry, ecology. Academic, New York, pp 1–54

    Google Scholar 

  • Brown JW, Mitchell JW (1948) Inactivation of 2,4-dichloropenoxyacetic acid in soil as affected by soil moisture, temperature, the addition of manure and autoclavong. Bot Gaz 109:314–323

    CAS  Google Scholar 

  • Brown JF Jr, Bedard DL, Brennan MJ, Carnahan JC, Feng H, Wagner RE (1987) Polychlorinated biphenyl dechlorination in aquatic sediments. Science 236:709–712

    CAS  PubMed  Google Scholar 

  • Bull AT (1980) Biodegradation: some attitudes and strategies of microorganisms and microbiologists. In: Ellwood DC, Hedger JN, Latham MJ, Lynch JM, Slater JH (eds) Contemporary microbial ecology. Academic, London/New York/Toronto/Sydney/San Francisco, pp 107–136

    Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1406

    CAS  Google Scholar 

  • Callaghan AV, Tierney M, Phelps CD, Young LY (2009) Anaerobic biodegradation on n-hexadecane by a nitrate-reducing consortium. Appl Environ Microbiol 75:1339–1344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carmona M, Zamarro MT, Blázquez B, Durante-Ro-dríguez G, Juárez JF, Valderrama JA, Barragán MJL, Garcia JL, Díaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73:71–133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cérémonie H, Boubakri H, Mavingu IP, Simonet P, Vogel TM (2006) Plasmid-encoded gamma-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas paucimobilis Sp+). FEMS Microbiol Lett 257:243–252

    PubMed  Google Scholar 

  • Chang SW, Lee SJ, Je CH (2005) Phytoremediation of atrazine by poplar trees: toxicity, uptake, and transformation. J Environ Sci Health B 40:801–811

    PubMed  Google Scholar 

  • Changey F, Devers-Lamrani M, Rouard N, Martin-Laurent F (2011) In vitro evolution of an atrazine-degrading population under cyanuric acid selection pressure: evidence for the selective loss of a 47 kb region on the plasmid ADP1 containing the atzA, B and C genes. Gene 490:18–25

    CAS  PubMed  Google Scholar 

  • Chilingar GV, Loo WW, Khilyuk LF, Katz SA (1997) Electrobioremediation of soils contaminated with hydrocarbons and metals: progress report. Energy Source 19:129–146

    CAS  Google Scholar 

  • Connel DW (1997) Basic concepts of environmental chemistry. CRC Press LLC., Boca Raton

    Google Scholar 

  • Cook AM, Hütter R (1984) Deethylsimazine: bacterial dechlorination, deamination and complete degradation. J Agric Food Chem 32:581–585

    CAS  Google Scholar 

  • Cornel P, Krause S (2008) Membrane bioreactors for wastewater treatment. In: Li NN, Fane AG, Ho WAG, Mat-suura T (eds) Advanced membrane technology and applications. Wiley, Holoken, pp 217–238

    Google Scholar 

  • Couillard D, Zhu S (1992) Bacterial leaching of heavy metals from sewage sludge for agricultural application. Water Air Soil Poll 63:67–80

    CAS  Google Scholar 

  • Cunningham JA, Rahme H, Hopkins GD, Lebron C, Reinhard M (2001) Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate. Environ Sci Technol 35:1663–1670

    CAS  PubMed  Google Scholar 

  • Cutter LA, Watts JEM, Sowers KR, May HD (2001) Identification of a microorganism that links its growth to the reductive dechlorination of a 2,3,5,6-chlorobiphenyl. Environ Microbiol 3:699–709

    CAS  PubMed  Google Scholar 

  • Dagley S (1978) Determinants of biodegradability. Q Rev Biophys 11:577–602

    CAS  PubMed  Google Scholar 

  • Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria : potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571

    CAS  PubMed  Google Scholar 

  • De Schrijver A, De Mot R (1999) Degradation of pesticides by actinomycetes. Crit Rev Microbiol 25:85–119

    PubMed  Google Scholar 

  • De Wilde T, Spanoghe P, Debear C, Ryckeboer J, Springael D, Jaeken P (2007) Overview of on-farm bioremediation systems to reduce the occurrence of point source contamination. Pest Manag Sci 63:111–128

    PubMed  Google Scholar 

  • Degrémont (2008) Mémento techniques de l’eau. 10e édition, tomes 1 et 2. Lavoisier, Cachan

    Google Scholar 

  • Dejonghe W, Goris J, El Fantroussi S, Hofte M, De Vos P, Verstraete W, Top EM (2000) Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 66:3297–3304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microbiol 3:649–657

    CAS  PubMed  Google Scholar 

  • Devers M, Soulas G, Martin-Laurent F (2004) Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Methods 56:3–15

    CAS  PubMed  Google Scholar 

  • Devers M, Henry S, Hartmann A, Martin-Laurent F (2005) Horizontal gene transfer of atrazine-degrading genes atz from Agrobacterium tumefaciens St96-4 pADP1::Tn5 to bacteria of maize-cultivated soil. Pest Manag Sci 61:870–880

    CAS  PubMed  Google Scholar 

  • Devers M, Rouard N, Martin-Laurent F (2007a) Genetic rearrangement of the atzAB atrazine-degrading gene cassette from pADP1::Tn5 to the chromosome of Variovorax sp. MD1 and MD2. Gene 392:1–6

    CAS  PubMed  Google Scholar 

  • Devers M, El Azhari N, Udikovic- Kolic N, Martin-Laurent F (2007b) Detection and organization of atrazine-degrading genetic potential of seventeen bacterial isolates belonging to divergent taxa indicate a recent common origin of their catabolic functions. FEMS Microbiol Lett 273:78–86

    CAS  PubMed  Google Scholar 

  • Devers M, Rouard N, Martin-Laurent F (2008) Fitness drift of an atrazine-degrading population under atrazine selection pressure. Environ Microbiol 10:676–684

    CAS  PubMed  Google Scholar 

  • Dodge AG, Wackett LP, Sadowsky MJ (2012) Plasmid localization and organization of melamin degradation genes in Rhodococcus sp. strain Mel. Appl Environ Microbiol 78:1397–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Don RH, Pemberton JM (1985) Genetic and physical map of the 2,4-Dichlorophenoxyacetic acid-degradative plasmid pJP4. J Bacteriol 161:466–468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Durand A (2003) Bioreactor designs for solid-state fermentation. Biochem Eng J 13:113–125

    CAS  Google Scholar 

  • Ehrlich HL (1995) Biogenesis and biodegradation of sulfide minerals on the earth’s surface. In: Ehrlich HL (ed) Geomicrobiology. Dekker, New York, pp 578–614

    Google Scholar 

  • El Azhari N, Devers-Lamrani M, Chatagnier G, Rouard N, Martin-Laurent F (2010) Molecular analysis of the catechol-degrading bacterial community in a coal wasteland heavily contaminated with PAHs. J Hazard Mater 177:593–601

    PubMed  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    PubMed  Google Scholar 

  • Elbaz-Poulichet F, Morley NH, Beckers JM, Nomerange P (2001) Dissolved metals fluxes through the Strait of Gibraltar – the influence of the Tinto and Odiel Rivers (SW Spain). Mar Chem 3–4:193–213

    Google Scholar 

  • Ellis LB, Wackett LP (2012) Use of the University of Minnesota biocatalysis/Biodegradation Database for study of microbial degradation. Microb Inform Exp 2:1

    PubMed Central  PubMed  Google Scholar 

  • Entry JA, Donnelly PK, Emmingham WH (1996) Mineralization of atrazine and 2,4-D in soils inoculated with Phanerochaete chrysosporium and Trappea darkeri. Appl Soil Ecol 3:85–90

    Google Scholar 

  • Fava F, Di Gioia D, Marchettei L, Quattroni G (1996) Aerobic dechlorination of low-chlorinated biphenyls by bacterial biofilms in packed-bed batch bioreactors. Appl Microbiol Biotechnol 45:562–568

    CAS  PubMed  Google Scholar 

  • Fava F, Di Gioia D, Marchetti L (1998) Cyclodextrin effects on the ex situ bioremediation of a chronically polychlorobiphenyl-contaminated soil. Biotechnol Bioeng 58:345–355

    CAS  PubMed  Google Scholar 

  • Felsot SA, Wilson JG, Kuhlamn DE, Steey KL (1982) Rapid dissipation of carbofuran as a limiting factor in corn root-worm control in ¢elds with histories of continuous furadan use. J Econ Entomol 75:1098–1103

    CAS  Google Scholar 

  • Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Häggblom MM (2004) Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38:2075–2081

    CAS  PubMed  Google Scholar 

  • Fernandez-Linarez L, Acquaviva M, Bertrand J-C, Gauthier M (1995) Effect of sodium chloride concentration on growth and degradation of eicosane by the marine halotolerant bacterium Marinobacter hydrocarbonoclasticus. Syst Appl Microbiol 19:113–121

    Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 155:1–12

    CAS  PubMed  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    CAS  PubMed  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial dégradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9:803–816

    CAS  PubMed  Google Scholar 

  • Furukawa K (2000) Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs). J Gen Appl Microbiol 46:283–296

    CAS  PubMed  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46:834–840

    CAS  Google Scholar 

  • Gaillard M, Vallaeys T, Vorhöleter FJ, Minoia M, Werlen C, Sentchilo V, Pülher A, van der Meer JR (2006) The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties. J Bacteriol 188:1999–2013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Gonzalez V, Govantes F, Porrua O, Santero E (2005) Regulation of the Pseudomonas sp. strain ADP cyanuric acid degradation operon. J Bacteriol 187:155–167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gauthier M, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576

    CAS  PubMed  Google Scholar 

  • Gazitúa MC, Slater AW, Melo F, González B (2010) Novel a-ketoglutarate dioxygenase tfdA-related genes are found in soil DNA after exposure to phenoxyalkanoic herbicides. Environ Microbiol 12:2411–2425

    PubMed  Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494

    CAS  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    CAS  Google Scholar 

  • Gilbert EC, Crowley DE (1997) Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. Strain B1B. Appl Environ Microbiol 63:1933–1938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grigg BC, Assaf NA, Turco RF (1997) Removal of atrazine contamination in soil and liquid systems using bioaugmentation. Pestic Sci 50:211–220

    CAS  Google Scholar 

  • Grimaud R (2010a) Marinobacter. In: Timmis KN, Mc Genity TJ, Merr JR, Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1289–1296

    Google Scholar 

  • Grimaud R (2010b) Biofilm development at interfaces between hydrophobic organic compounds and water. In: Timmis KN, Mc Genity TJ, Merr JR, Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1491–1499

    Google Scholar 

  • Grossi V, Massias D, Stora G, Bertrand J-C (2002) Burial, exportation and degradation of acyclic petroleum hydrocarbons following a simulated oil spill in bioturbed Mediterranean coastal sediments. Chemosphere 48:947–954

    CAS  PubMed  Google Scholar 

  • Grossi V, Cravo-Laureau C, Guyoneaud R, Ranchou- Peyruse A, Hirschler-Réa A (2008) Metabolism of n-alkanes by anaerobic bacteria: a summary. Org Geochem 39:1197–1203

    CAS  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    CAS  PubMed  Google Scholar 

  • Hafeez F, Spor A, Breuil MC, Schwartz C, Martin-Laurent F, Philippot L (2012) Distribution of bacteria and nitrogen-cycling microbial communities along constructed Technosol depth-profiles. J Hazard Mater 231:88–97

    PubMed  Google Scholar 

  • Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70

    CAS  PubMed  Google Scholar 

  • Harker AR, Olsen RH, Seidler RJ (1989) Phenoxyacetic acid degradation by the 2,4-dichlorophenoxyacetic acid (TFD) pathway of plasmid pJP4: mapping and characterization of the tfd regulatory gene, tfd R. J Bacteriol 171:314–320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harkness MR et al (1993) In situ stimulation of aerobic PCB biodegradation in Hudson river sediments. Science 259:503–507

    CAS  PubMed  Google Scholar 

  • Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    CAS  PubMed  Google Scholar 

  • Hatamian-Zarmi A, Shojaosadati A, Vasheghani-Farahani E, Hosseinkhani S, Emamzadeh A (2009) Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils. Int Biodeterior Biodegrad 63:788–794

    CAS  Google Scholar 

  • Head IM, Jones DM, Larter ST (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    CAS  PubMed  Google Scholar 

  • Heider J (2007) Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 11:188–194

    CAS  PubMed  Google Scholar 

  • Henze M, Harremoës P, La Cour Jansen J, Arvin E (2002) Wastewater treatment: biological and chemical processes. Springer, Berlin

    Google Scholar 

  • Hickey WJ, Fuster DJ, Lamar RT (1994) Transformation of atrazine in soil by Phanerochaete chrysosporium. Soil Biol Biochem 26:1665–1671

    CAS  Google Scholar 

  • Ho C, Applegate B, Banks MK (2007) Impact of microbial/plant interactions on the transformation of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca arundinacea. Int J Phytoremediation 9:107–114

    CAS  PubMed  Google Scholar 

  • Hogan DA, Buckley DH, Nakatsu CH, Schmidt TM, Hausinger RP (1997) Distribution of the tfdA gene in soil bacteria that do not degrade 2,4- dichlorophenoxyacetic acid (2,4-D). Microb Ecol 34:90–96

    CAS  PubMed  Google Scholar 

  • Hornafius TS, Quigley DC, Luyendik BNP (1999) The world’s most spectacular marine hydrocarbon seeps (Coil Oil Point, Santa Barbara Channel, California): quantification and emission. J Geophys Res 104:20703–20711

    CAS  Google Scholar 

  • Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev 36:146–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Houot S, Topp E, Yassir A, Soulas G (2000) Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biol Biochem 32:615–625

    CAS  Google Scholar 

  • Hurlbert MH, Krawieck S (1977) Cometabolism: a critique. J Theor Biol 69:287–291

    Google Scholar 

  • Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (2002) Manual of environmental microbiology, 2nd edn. ASM Press, Washington, DC

    Google Scholar 

  • Husain DR, Goutx M, Bezac C, Gilewicz M, Bertrand J-C (1997) Morphological adaptation of Pseudomonas nautica strain 617 to growth on eicosane and modes of eicosane uptake. Lett Appl Microbiol 24:55–58

    CAS  Google Scholar 

  • Imai R, Nagata Y, Fukuda M, Takagi M, Yano K (1991) Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HCl molecules from g-hexachlorocyclohexane. J Bacteriol 173:6811–6819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itoh K, Kanda R, Sumita Y, Kim H, Kamagata Y, Suyama K, Yamamoto H, Hausinger RP, Tiedje JM (2002) tfdA -like genes in 2,4-dichlorophenoxyacetic acid-degrading bacteria belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in a-proteobacteria. Appl Environ Microbiol 68:3449–3454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1–8

    CAS  PubMed  Google Scholar 

  • Jensen HL (1963) Carbon nutrition of some microorganisms decomposing halogen-substituted aliphatic acids. Acta Agr Scand 13:404–412

    CAS  Google Scholar 

  • Johnsen AR, Karlson U (2004) Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 63:452–459

    CAS  PubMed  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    CAS  PubMed  Google Scholar 

  • Joner EJ, Leyval C (2003) Phytoremediation of organic pollutants using mycorrhizal plants; a new aspect of rhizosphere interactions. Agronomie 23:495–502

    CAS  Google Scholar 

  • Julsing MK, Schrewe M, Cornelissen S, Hermann I, Schmid A, Bühler B (2012) Outer membrane protein AlkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli. Appl Environ Microbiol 78:5724–5733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalin N, Wheeler WN, Meinrath G (2005) The removal of uranium form mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177

    CAS  PubMed  Google Scholar 

  • Khelifi N, Grossi V, Hamdi M, Dolla A, Tholozan J-L, Ollivier B, Hirschler-Réa A (2010) Anaerobic oxidation of fatty acids and alkenes by the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus. Appl Environ Microbiol 76:3057–3060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim E-J, Oh JE, Chang Y-S (2003) Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Sci Total Environ 311:177–189

    CAS  PubMed  Google Scholar 

  • Kim DU, Kim MS, Lim JS, Ka JO (2013) Widespread occurrence of the tfd-II genes in soil bacteria revealed by nucleotide sequence analysis of 2,4-dichlorophenoxyacetic acid degradative plasmids pDB1 and p712. Plasmid 69:243–248

    CAS  PubMed  Google Scholar 

  • Klein B, Grossi V, Bouriat P, Goulas P, Grimaud R (2008) Cytoplasmic wax ester accumulation during biofilm-driven substrate assimilation at the alkane-water interface by Marinobacter hydrocarbonoclasticus SP17. Res Microbiol 159:137–144

    CAS  PubMed  Google Scholar 

  • Knackmus HJ (1981) Degradation of halogenated and sulfonated hydrocarbons. In: Leisinger T, Cook AM, Müller R, Nüsch J (eds) Microbial degradation of xenobiotic and recalcitrant compounds. Academic, London, pp 189–212

    Google Scholar 

  • Kolic NU, Hrsak D, Begonja Kolar A, Petric I, Stipicevic S, Soulas G, Martin-Laurent F (2007) Combined metabolic activity within an atrazine-mineralizing community enriched from agrochemical factory soil. Int Biodeter Biodegr 60:299–307

    CAS  Google Scholar 

  • Konhauser K (2007) Biomineralisation. In: Kohnhauser K (ed) Introduction to geomicrobiology. Blackwell, Oxford, pp 139–191

    Google Scholar 

  • Kunapuli U, Griehler C, Beller HR, Meckenstock RU (2008) Identification of intermediates formed during anaerobic benzene degradation by iron-reducing enrichment culture. Environ Microbiol 10:1703–1712

    CAS  PubMed  Google Scholar 

  • La Farge B (1995) Le biogaz. Masson, Paris/Milan/Barcelona

    Google Scholar 

  • Laemmli CM, Leveau JHJ, Zehnder AJB, van der Meer JR (2000) Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134 (pJP4). J Bacteriol 82:165–4172

    Google Scholar 

  • Lajoie CA, Zylstra CJ, DeFlaun MF, Strom PF (1993) Development of field application vectors for remediation of soils contaminated with polychlorinated biphenyls. Appl Environ Microbiol 59:1735–1741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lal R, Dogra C, Malhotra S, Sharma P, Pal R (2006) Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends Biotechnol 24:121–130

    CAS  PubMed  Google Scholar 

  • Lawniczak L, Marecik R, Chrzanowski L (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le Dréau Y, Gilbert F, Doumenq P, Bertrand J-C, Mille G (1997) The use of hopanes to track in situ variations in petroleum composition in surface sediments. Chemosphere 34:1663–1672

    Google Scholar 

  • Leadbetter ER, Foster JW (1959) Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica. Arch Biochem Biophys 82:491–492

    CAS  PubMed  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leblanc M, Morales JA, Borrego J, Elbaz-Poulichet F (2000) 4,500-year-old mining pollution in southwestern Spain: long-term implications for modern mining pollution. Econ Geol 95:655–662

    CAS  Google Scholar 

  • Leisinger T (1983) General aspects. Microorganisms and xenobiotic compounds. Cell Mol Life Sci 39:1183–1191

    CAS  Google Scholar 

  • Leslie-Grady CP Jr (1985) Biodegradation: its measurement and microbiological basis. Biotechnol Bioeng 27:660–674

    Google Scholar 

  • Leveau JHJ, Zehnder AJB, van Der Meer JR (1998) The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134 (pJP4). J Bacteriol 180:2237–2243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leyval C (2005) Pollutions organiques agricoles, urbaines ou industrielles: cas des hydrocarbures aromatiques polycycliques. In: Girard M-C, Walter C, Remy JC, Berthelin J, Morel JL (eds) Sols et environnement. Dunod, Paris

    Google Scholar 

  • Lloyd JR, Lovley DR, Macaskie LE (2003) Biotechnological application of metal-reducing microorganisms. Adv Appl Microbiol 53:85–128

    CAS  PubMed  Google Scholar 

  • Lofroth G, Ames BN (1978) Mutagenicity of inorganic compounds in salmonella typhimurium: arsenic, chromium and selenium. Mutat Res 53:65–66

    Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa E (1991) Microbial reduction of uranium. Nature 350:413–416

    CAS  Google Scholar 

  • Lu Y, Yu Y, Zhou R, Sun W, Dai C, Wan P, Zhang L, Hao D, Ren H (2011) Cloning and characterisation of a novel 2,4-dichlorophenol hydroxylase from a metagenomic library derived from polychlorinated biphenyl-contaminated soil. Biotechnol Lett 33:1159–1167

    CAS  PubMed  Google Scholar 

  • Mackay D, Shiu WY, Ma KC (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, vol 1, Monoaromatic hydrocarbons, chlorobenzenes and PCBs. Lewis Publishers, Ann Arbor

    Google Scholar 

  • Magar VS, Brenner RC, Johnson GW, Quensen JF III (2005) Long-term recovery of PCB-contaminated sediments at the lake Hartwell superfund site: PCB dechlorination 2. Rates and extend. Environ Sci Technol 39:3548–3554

    CAS  PubMed  Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2000) Environmental microbiology. Academic, San Diego/San Francisco/New York/Boston/London/Sydney/Tokyo

    Google Scholar 

  • Mandelbaum RT, Allan DL, Wackett LP (1995) Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61:1451–1457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcacci S, Raveton M, Ravanel P, Schwitzguébel J (2005) The possible role of hydroxylation in the detoxification of atrazine in mature vetiver (Chrysopogon zizanioides Nash) grown in hydroponics. Z Naturforsch C 60:427–434

    CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    CAS  PubMed  Google Scholar 

  • Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. Strain ADP. J Bacteriol 183:5684–5697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin-Laurent F, Barret B, Wagschal I, Piutti S, Devers M, Soulas G, Philippot L (2006) Impact of the maize rhizosphere on the genetic structure, the diversity and the atrazine-degrading gene composition of cultivable atrazine-degrading communities. Plant Soil 282:99–115

    CAS  Google Scholar 

  • Master ER, Lai VWM, Kuipers B, Cullen WR, Mohn WW (2002) Sequential anaerobic-aerobic treatment of soil contaminated with weathered Aroclor 1260. Environ Sci Technol 36:100–103

    CAS  PubMed  Google Scholar 

  • Mau S, Valentine DL, Clark JF, Reed J, Camilli R, Washburn L (2007) Dissolved methane distribution and air-sea flux in the plume of a massive seep field, Coal Oil Point, California. Geophys Res Lett 34:1–5

    Google Scholar 

  • May HD, Miller GS, Kjellerup BV, Sowers KR (2008) Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbiol 74:2089–2094

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGowan C, Fulthorpe R, Wright A, Tiedje JM (1998) Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenxyacetic acid degraders. Appl Environ Microbiol 64:4089–4092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Means AJ (1991) Observation of an oil spill bioremediation activity in Galveston Bay, Texas. US Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Seattle

    Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    CAS  PubMed  Google Scholar 

  • Mhiri C, Tandeau de Marsac N (1997) Réhabilitation par les micro-organismes de sites contenant du pyralène : problématique et perspectives d’étude. Bull Inst Pasteur 95:3–28

    Google Scholar 

  • Michel FC Jr, Quensen J, Reddy CA (2001) Bioremediation of a PCB-contaminated soil via composting. Compost Sci Util 9:274–284

    Google Scholar 

  • Miralles G, Grossi V, Acquaviva M, Duran R, Bertrand J-C, Cuny P (2007) Alkane degradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Chemosphere 68:1327–1334

    CAS  PubMed  Google Scholar 

  • Mitchell JW, Hamner CL (1944) Polyethyleneglycol as carriers for growth regulating substances. Bot Gaz 105:474–483

    CAS  Google Scholar 

  • Monard C, Martin-Laurent F, Lima O, Devers-Lamrani M, Binet F (2013) Estimating the biodegradation of pesticide in soils by monitoring pesticide-degrading gene expression. Biodegradation 24:203–213

    CAS  PubMed  Google Scholar 

  • Mougin C, Laugero C, Asther M, Chaplain V (1997) Biotransformation of s-triazine herbicides and related degradation products in liquid cultures by the white rot fungus Phanerochaete chrysosporium. Pestic Sci 49:169–177

    CAS  Google Scholar 

  • Mulbry WW (1994) Purification and characterization of an inducible s-triazine hydrolase from Rhodococcus corallinus NRRL B-15444R. Appl Environ Microbiol 60:613–618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagata Y, Kamakura M, Endo R, Miyazaki R, Ohtsubo Y, Tsuda M (2006) Distribution of γ-hexachlorocyclohexane-degrading genes on three replicons in Sphingobium japonicum UT26. FEMS Microbiol Lett 256:112–118

    CAS  PubMed  Google Scholar 

  • Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M (2007) Aerobic degradation of lindane (gamma-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76(4):741–752

    CAS  PubMed  Google Scholar 

  • Nagy I, Schoofs G, Compernolle F (1995) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve and inducible cytochrome P450 system and aldehyde deshydrogenase. J Bacteriol 177:676–687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Natarajan MR, Wu WM, Nye J, Wang H, Bhatnagar L, Jain MK (1996) Dechlorination of polychlorinated biphenyl congeners by an anaerobic microbial consortium. Appl Microbiol Biotechnol 46:673–677

    CAS  Google Scholar 

  • National Research Council (1985) Oil in the sea: inputs, fates and effects. National Academy of Sciences, Washington, DC

    Google Scholar 

  • National Research Council (2002) Oil in the sea III: inputs, fates and effects. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Ni’Matuzahro N, Gilewicz M, Guliano M, Bertrand J-C (1999) In vitro study of interaction between photo-oxidation and biodegradation of n-methylphenanthrene by Sphyngomonas sp. 2MPII. Chemosphere 38:2501–2507

    Google Scholar 

  • Nies L, Vogel TM (1990) Effects of organic substrates on dechlorination of Aroclor 1242 in anaerobic sediments. Appl Environ Microbiol 56:2612–2617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Norberg P, Bergström M, Jethava V, Dubhashi D, Hermansson M (2011) The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat Commun 2:268. doi:10.1038/ncomms1267

    PubMed Central  PubMed  Google Scholar 

  • Ohtsubo Y, Kudo T, Tsuda M, Nagata Y (2004) Strategies for bioremediation of polychlorinated biphenyls. Appl Microbiol Biotechnol 65:250–258

    CAS  PubMed  Google Scholar 

  • Okuda T, Kumata H, Zakaria MF, Naroaka H, Ishiwatari R, Takada H (2002) Source identification of Malaysian atmospheric polycyclic aromatic hydrocarbons nearby forest fire using molecular and isotopic compositions. Atmos Environ 36:611–618

    CAS  Google Scholar 

  • Oleszczuk P (2007) Changes of polycyclic aromatic hydrocarbons during composting of sewage sludges with chosen physico-chemical properties and PAHs content. Chemosphere 67:582–591

    CAS  PubMed  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    CAS  PubMed  Google Scholar 

  • Otte MP, Gagnon J, Comeau Y, Matte N, Greer CW, Samson R (1994) Activation of an indigenous microbial consortium for bioaugmentation of pentachlorophenol-creosote contaminated soils. Appl Microbiol Biotechnol 40:926–932

    CAS  Google Scholar 

  • Pandey J, Chauhan A, Jain RK (2009) Integrative approaches for assessing the ecological sustainability on in situ bioremediation. FEMS Microbiol Rev 33:324–375

    CAS  PubMed  Google Scholar 

  • Pei XH, Zhan XH, Wang SM, Lin YS, Zhou LX (2010) Effects of a biosurfactant and a synthetic surfactant on phenanthrene degradation by a Sphingomonas strain. Pedosphere 20:771–779

    CAS  Google Scholar 

  • Pemberton JM, Fisher PR (1977) 2,4-D plasmids and persistence. Nature 268:732–733

    CAS  PubMed  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    CAS  PubMed  Google Scholar 

  • Perkovich BS (1996) Enhanced mineralization of [14C]atrazine in Kochia scoparia rhizospheric soil from a pesticide-contaminated site. Pestic Sci 46:391–396

    CAS  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide, vols 1 and 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Petric I, Bru D, Udikovic-Kolic N, Hrsak D, Philippot L, Martin-Laurent F (2011) Evidence for shifts in the structure and abundance of microbial community in a long-term PCB-contaminated soil under bioremediation. J Hazard Mater 195:254–260

    CAS  PubMed  Google Scholar 

  • Phillips EJP, Landa E, Lovley DR (1995) Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J Ind Microbiol 14:203–207

    CAS  Google Scholar 

  • Pieper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191

    CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    CAS  PubMed  Google Scholar 

  • Pineda-Flores G, Boll-Argüello G, Lira-Galeana C, Mesta-Howard AM (2004) A microbial consortium isolated from a crude oil sample that uses asphaltenes as carbon and energy source. Biodegradation 15:145–151

    CAS  PubMed  Google Scholar 

  • Piutti S, Marchand AL, Lagacherie B, Martin-Laurent F, Soulas G (2002) Effect of successive cropping cycles with different plants and repeated herbicide applications on the degradation of the diclofop-methyl, bentazon, diuron, isoproturon and pendimethalin in soil. Pest Manag Sci 58:303–312

    CAS  PubMed  Google Scholar 

  • Poelarends GJ, van Hylckama Vlieg JE, Marchesi JR, Freitas Dos Santos LM, Janssen DB (1999) Degradation of 1,2-dibromoethane by Mycobacterium sp. strain GP1. J Bacteriol 181(7):2050–2058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prince RC (1993) Petroleum spill bioremediation in marine environments. Crit Rev Microbiol 19:217–242

    CAS  PubMed  Google Scholar 

  • Prince RC (2010) Eucaryotic hydrocarbon degraders. In: Timmis KN, Mc Genity TJ, Merr JR, Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 2065–2078

    Google Scholar 

  • Prince RC, Elmendorf DL, Lute JR, Hsu CS, Halth CE, Senlus JD, Dechert GJ, Douglas GS, Butler EL (1994) 17. alpha. (H)-21. beta. (H)-hopane as a con- served internal marker for estimating the biodegradation of crude oil. Environ Sci Technol 28:142–145

    CAS  PubMed  Google Scholar 

  • Prince RC, Gramain A, McGenity TJ (2010) Procaryotic hydrocarbon degraders. In: Timmis KN, Mc Genity TJ, Merr JR, Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1671–1692

    Google Scholar 

  • Pritchard PH, Mueller JG, Rogers JC, Kremer FV, Glaser JA (1992) Oil spill bioremediation : experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation 3:315–335

    CAS  Google Scholar 

  • Quensen JF III, Boyd SA, Tiedje JM (1990) Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl Environ Microbiol 56:2360–2369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rabus R (2005) Biodegradation of hydrocarbon under anoxic conditions. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 277–299

    Google Scholar 

  • Raillard S et al (2001) Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chem Biol 8:891–898

    CAS  PubMed  Google Scholar 

  • Ramade F (2002) Dictionnaire encyclopédique de l’écologie et des sciences de l’environnement, 2eth edn. Dunod, Paris

    Google Scholar 

  • Reanney DC (1976) Extrachromosomal elements as possible agents of adaptation and development. Bacteriol Rev 40:552–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reátegui E, Reynolds E, Kasinkas L, Aggarwal A, Sadowsky M, Aksan A, Wackett L (2012) Silica gel-encapsulated AtzA biocatalyst for atrazine biodegradation. Appl Microbiol Biotechnol 96:231–240

    PubMed  Google Scholar 

  • Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell J IV, Easter JP, Cox CD, Burlage RS, Sayler GS (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853

    CAS  Google Scholar 

  • Roanne TM, Pepper IL, Miller RM (1996) Microbial remediation of metals. In: Crawford RL, Crawford DL (eds) Bioremediation, principles and application. Cambridge University Press, Cambridge, pp 312–340

    Google Scholar 

  • Robinson JB, Tuovinen OH (1984) Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses. Microbiol Rev 48:95–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigues JLM, Kachel CA, Aiello MR, Quensen JF, Maltseva OV, Tsoi TV, Tiedje JM (2006) Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400 (ohb) and Rhodococcus sp. Strain RHA1 (fcb). Appl Environ Microbiol 72:2476–2482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490

    CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    CAS  PubMed  Google Scholar 

  • Rontani JF, Bosser-Jpulak F, Rambeloarisoa E, Bertrand J-C, Giusti G (1985) Analytical study of asthart crude oil: asphaltenes biodegradation. Chemosphere 14:1413–1422

    CAS  Google Scholar 

  • Rosenberg E, Ron EZ (2000) Biosurfactant. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 834–849

    Google Scholar 

  • Rousseaux S, Hartmann A, Lagacherie B, Piutti S, Andreux F, Soulas G (2003) Inoculation of an atrazine-degrading strain, Chelatobacter heintzii Cit1, in four different soils: effects of different inoculum density. Chemosphere 51:569–576

    CAS  PubMed  Google Scholar 

  • Rudolph C, Wanner G, Huber R (2001) Natural communities of novel Archaea and Bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl Environ Microbiol 67:2336–2344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Runes HB, Jenkins JJ, Bottomley PJ (2001) Atrazine degradation by bioaugmented sediment from constructed wetlands. Appl Microbiol Biotechnol 57:427–432

    CAS  PubMed  Google Scholar 

  • Ryckeboer J, Mergaert J, Coosemans J, Deprins K, Swings J (2003) Microbiological aspects of biowaste during composting in a monitored compost bin. J Appl Microbiol 94:127–137

    CAS  PubMed  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    CAS  PubMed  Google Scholar 

  • Sandmann ERIC, Loos MA (1988) Aromatic metabolism by 2,4-G degrading Arthrobacter sp. Can J Microbiol 34:125–130

    CAS  Google Scholar 

  • Saouter E, Turner R, Barkay T (1994) Microbial reduction of ionic mercury for the removal of mercury from contaminated environments. Ann N Y Acad Sci 721:423–427

    CAS  PubMed  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganims for bioremediation processes. Curr Opin Biotechnol 11:286–289

    CAS  PubMed  Google Scholar 

  • Schlüter A, Szczepanowski R, Pühler A, Top EM (2007) Genomics of IncP-1antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 31:449–477

    PubMed  Google Scholar 

  • Schneiker S et al (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004

    CAS  PubMed  Google Scholar 

  • Scott C et al (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scott C, Jackson CJ, Coppin CW, Mourant RG, Hilton ME, Sutherland TD, Russell RJ, Oakeshott JG (2009) Catalytic improvement end evolution of atrazine chlorohydrolase. Appl Environ Microbiol 75:2184–2191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scott C, Lewis SE, Milla R, Taylor MC, Rodgers AJW, Dumsday G, Brodie JE, Oakeshott JG, Russell RJ (2010) A free-enzyme catalyst for the bioremediation of environmental atrazine contamination. J Environ Manage 91:2075–2078

    CAS  PubMed  Google Scholar 

  • Seitz H-J, Siñeriz F, Schink B, Conrad R (1990) Hydrogen, production during fermentation of acetoin and acetylene by Pelobacter acetylenicus. FEMS Microbiol Lett 71:83–88

    CAS  Google Scholar 

  • Sen D, Van der Auwera GA, Rogers LM, Thomas CM, Brown CJ, Top EM (2011) Broad-host-range plasmids from agricultural soils have IncP-1 backbones with diverse accessory genes. Appl Environ Microbiol 77:7975–7983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sere G, Schwartz C, Ouvrard S, Sauvage C, Renat JC, Morel JL (2008) Soil construction: a step for ecological reclamation of derelict lands. J Soils Sediments 8:130–136

    CAS  Google Scholar 

  • Seviour RJ, Mino T, Onuki M (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27:99–127

    CAS  PubMed  Google Scholar 

  • Shao ZQ, Seffens W, Mulbry W, Behki RM (1995) Cloning and expression of the s-triazine hydrolase gene (trzA) from Rhodococcus corallinus and development of Rhodococcus recombinant strains capable of delkylating and dechlorinating the herbicide atrazine. J Bacteriol 177:5748–5755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma VK, Canditelli M, Fortuna F, Cornacchia G (1997) Processing of urban and agro-industrial residues by aerobic composting: review. Energy Convers Manage 38:453–478

    CAS  Google Scholar 

  • Silver S, Phung LT (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    CAS  PubMed  Google Scholar 

  • Simoneit BRT, Rogge WF, Lang Q, Jaffé R (2000) Molecular characterization of smoke from campfire burning of pine wood (Pinus elliottii). Chemosphere: Global Chang Sci 2:107–122

    CAS  Google Scholar 

  • Singh N (2003) Enhanced degradation of hexachlorocyclohexane isomers in rhizosphere soil of Kochia sp. Bull Environ Contam Toxicol 70:0775–0782

    CAS  Google Scholar 

  • Singh N, Megharaj M, Kookana RS, Naidu R, Sethunathan N (2004) Atrazine and simazine degradation in Pennisetum rhizosphere. Chemosphere 56:257–263

    CAS  PubMed  Google Scholar 

  • Singh A, Kumar V, Srivastava J (2012) Bioremediation: for petroleum cleanup: bioremediation: a promising tool for petroleum contamination. Lambert Academic Publishing, Sarrebruck

    Google Scholar 

  • Slater JH, Bull AT (1982) Environmental microbiology biodegradation. Philos Trans R Soc Lond B Biol Sci 297:575–597

    CAS  Google Scholar 

  • Smith D, Alvey S, Crowley DE (2005) Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil. FEMS Microbiol Ecol 53:265–273

    CAS  PubMed  Google Scholar 

  • Soulas G (2003) Pesticide degradation in soils. In: Encyclopedia of environmental microbiology. Wiley, Oxford, pp 2385–2402

    Google Scholar 

  • Springael D, Ryngaert A, Merlin C, Toussaint A, Mergeay M (2001) Occurrence of TN4371-related mobile elements and sequences in chlorobiphenyl-degrading bacteria. Appl Environ Microbiol 67:42–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stephensons T (2000) Membrane bioreactors for wastewater treatment. IWA Publishing, London

    Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    CAS  PubMed  Google Scholar 

  • Strong LC, McTavish H, Sadowsky MJ, Wackett LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 2:91–98

    CAS  PubMed  Google Scholar 

  • Sulmon C, Gouesbet G, Binet F, Martin-Laurent F, El Amrani A, Couée I (2007) Soluble sugar amendment of plants enhances phytoaccumulation of organic contaminants and phytoremediation of contaminated soil. Environ Pollut 145:507–515

    CAS  PubMed  Google Scholar 

  • Summers AO (1992) The hard stuff: metal in bioremediation. Curr Opin Biotechnol 3:271–276

    CAS  Google Scholar 

  • Swannell RPJ, Lee K, McDonagh M (1996) Field evaluations of marine oil spill bioremediation. Microbial Rev 60:342–365

    CAS  Google Scholar 

  • Tapilatu HY, Grossi V, Acquaviva M, Militon C, Bertrand J-C, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231

    CAS  PubMed  Google Scholar 

  • Tartakovsky B, Michotte A, Cadieux J-CA, Lau PCK, Hawari J, Guiot SR (2001) Degradation of Aroclor 1242 in a single-stage coupled anaerobic/aerobic bioreactor. Water Res 35:4323–4330

    CAS  PubMed  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment and re-use. McGraw-Hall Companies, New York

    Google Scholar 

  • Thayer JS, Brinkman FE (1982) The biological methylation of metals and metalloids. Adv Organomet Chem 20:313–357

    CAS  Google Scholar 

  • Thomas JC, Berger F, Jacquier M, Bernillon D, Baud-Grasset F, Truffaut N, Normand P, Vogel TM, Simonet P (1996) Isolation and characterization of a novel γ-hexachlorocyclohexane-degrading bacterium. J Bacteriol 178:6049–6055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915

    CAS  PubMed  Google Scholar 

  • Timmis KN (2010) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:201–204

    CAS  Google Scholar 

  • Topp E (2001) A comparison of three atrazine-degrading bacteria for soil bioremediation. Biol Fert Soils 33:529–534

    CAS  Google Scholar 

  • Topp E, Tessier L, Gregorich EG (1996) Dairy manure incorporation stimulates rapid atrazine mineralisation in an agricultural soil. Can J Soil Sci 76:403–409

    CAS  Google Scholar 

  • Topp E, Mulbry WM, Zhu H, Nour SM, Cuppels D (2000) Characterization of S-Triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils. Appl Environ Microbiol 66:3134–3141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Topp E, Martin-Laurent F, Hartmann A, Soulas G (2004) Bioremediation of atrazine-contamined soil. In: Gan JJ, Zhu PC, Aust SD, Lemley AT (eds) Pesticide, decontamination and detoxification. American Chemical Society, Washington, DC, pp 141–154

    Google Scholar 

  • Topp E, Chapman R, Devers-Lamrani M, Hartmann A, Martin-Laurent F, Marti R, Sabourin L, Scott A, Sumaraha M (2013) Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfonamide-degrading microbacterium. J Environ Qual 42:173–178

    CAS  PubMed  Google Scholar 

  • Trefault N, de la Iglesia R, Molina AM, Manzano M, Ledger T, Pérez-Pantoja D, Sánchez MA, Stuardo M, González B (2004) Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6:655–668

    CAS  PubMed  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    CAS  Google Scholar 

  • Udikovic-Kolic N, Scott C, Martin-Laurent F (2012) Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 96:1175–1189

    CAS  PubMed  Google Scholar 

  • Vallaeys T, Courde L, Mc Gown C, Wright AD, Fulthorpe RR (1999) Phylogenetic analyses indicate independent recruitment of diverse gene cassettes during assemblage of the 2,4-D catabolic pathway. FEMS Microbiol Ecol 28:373–382

    CAS  Google Scholar 

  • van Beilen JB, Panke S, Lucchini S, Franchini AG, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630

    PubMed  Google Scholar 

  • van der Meer JR (1997) Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek 71:159–178

    PubMed  Google Scholar 

  • Van der Meer JR, Sentchilo V (2003) Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol 14:248–254

    PubMed  Google Scholar 

  • van der Meer JR, de Vos WM, Harayama S, der Zehn- AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694

    PubMed Central  PubMed  Google Scholar 

  • van der Roest HF, Lawrence DP, van Bentem AGN (2002) Membrane bioreactors for municipal wastewater treatment. IWA Publishing, London

    Google Scholar 

  • van Eerd LL, Hoagland RE, Zablotowicz RM, Hall JC (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51:472–495

    Google Scholar 

  • van Haandel A, van der Lubbe J (2007) Handbook biological wastewater treatment. Quist Publishing, Leidschendam

    Google Scholar 

  • van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    PubMed Central  PubMed  Google Scholar 

  • Vandecasteele J-P (2008) Petroleum microbiology. Tomes 1 et 2. Editions Technip, Paris

    Google Scholar 

  • Vesilind PA (2003) Wastewater treatment plant design. IWA Publishing, London

    Google Scholar 

  • Waid JS (1972) The possible importance of transfer factors in the bacterial degradation of herbicides in natural ecosystems. Res Rev 44:65–71

    CAS  Google Scholar 

  • Wang YT (2000) Microbial reduction of chromate. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC, pp 225–235

    Google Scholar 

  • Wang L, Samac DA, Shapir N, Wackett LP, Vance CP, Olszewski NE, Sadowsky MJ (2005) Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotechnol J 3:475–486

    CAS  PubMed  Google Scholar 

  • Wang C-M, Shyu C-L, Ho S-P, Chiou S-H (2007) Species diversity and substrate utilisation patterns of thermophilic bacterial communities in hot aerobic poultry and cattle manure composts. Microbiol Ecol 54:1–9

    Google Scholar 

  • White C, Gadd GM (1996) Mixed sulphate-reducing cultures for the bioprecipitation of toxic metals: factorial and response analysis of the effects of dilution rate, sulphate and substrate concentration. Biodegradation 14:139–151

    Google Scholar 

  • White LG, Bourbonnière L, Greer CW (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63:3719–3723

    Google Scholar 

  • Wick LY, Colangelo T, Harms H (2001) Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environ Sci Technol 35:354–361

    CAS  PubMed  Google Scholar 

  • Wick LY, De Munain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385

    CAS  PubMed  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    CAS  PubMed  Google Scholar 

  • Widdowson MA, Shearer S, Andersen RG, Novak JT (2005) Remediation of polycyclic aromatic hydrocarbon compounds in groundwater using poplar trees. Environ Sci Technol 39:1598–1605

    CAS  PubMed  Google Scholar 

  • Williams PT (2005) Waste treatment and disposal. Wiley, Chichester

    Google Scholar 

  • Woodard and Curran, Inc, (2006) Industrial waste treatment handbook. Elsevier, Burlington

    Google Scholar 

  • WRB IWG (2006) World reference base for soil resource, 2nd ed. World Resources Report 103, FAO, Rome

    Google Scholar 

  • Yadav JS, Quensen JF III, Tiedje JM, Reddy CA (1995) Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Appl Environ Microbiol 61:2560–2565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    CAS  PubMed  Google Scholar 

  • Yi H, Crowley DE (2007) Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ Sci Technol 41:4382–4388

    CAS  PubMed  Google Scholar 

  • Zengler K, Heider J, Rosselló-Mora R, Widdel F (1999) Phototrophic utilisation of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch Microbiol 172:204–212

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Bertrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bertrand, JC. et al. (2015). Applied Microbial Ecology and Bioremediation. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_16

Download citation

Publish with us

Policies and ethics