Skip to main content

The Extreme Conditions of Life on the Planet and Exobiology

  • Chapter
  • First Online:
Environmental Microbiology: Fundamentals and Applications

Abstract

Extreme physicochemical conditions (low and high temperatures, high salinity, low and high pH, high hydrostatic pressure, etc.) existing on Earth are compatible with the occurrence of microbial life. The diversity and metabolic features of microbial trophic groups inhabiting extreme environments (cold, hot, saline, acidic, alkaline, and deep marine) are described. They include hydrothermal vents, acid springs, hypersaline and/or alkaline lakes, permafrost, and deep-sea environments, etc.

To live or survive under such drastic conditions, prokaryotes (Bacteria or Archaea) have developed a variety of physiological and metabolic strategies allowing them to adapt to in situ extreme conditions. Many of these extremophiles are recognized to be of industrial interest or to be potential candidates for future biotechnological applications.

Clearly, the discovery of extremophiles living in terrestrial, subterrestrial, and deep marine environments has changed our perception of microbial life. One or a combination of extreme physicochemical conditions that they have to face may have prevailed in the primitive atmosphere and favored early extremophilic life not only on Earth but perhaps also on other planets.

Chapter Coordinators

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera A, Gonzalez-Toril E, Souza-Egipsy V, Amaral-Zettler L, Zettler E, Amils R (2010) Phototrophic biolfilms from Rio Tinto, an extreme acidic environments, the prokaryotic component. In: Seckbach J, Oren A (eds) Microbial mats. Modern and ancient microorganisms in stratified systems. Springer, Heidelberg, pp 471–481

    Google Scholar 

  • Alazard D, Joseph M, Battaglia-Brunet F, Cayol JL, Ollivier B (2010) Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments. New taxa: Firmicutes (Class Clostridia, Order Clostridiales, Family Peptococcaceae). Extremophiles 14:305–312

    Article  CAS  PubMed  Google Scholar 

  • Amaral-Zettler LA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML (2003) Eukaryotic diversity in Spain’s River of Fire. Nature 417:137

    Article  Google Scholar 

  • Basen M, Sun J, Adams M (2012) Engineering a hyperthermophilic archaeon for temperature-dependent product formation. mBio 3:e00053-12. doi:10.1128/mBio.00053-12

    Article  PubMed Central  PubMed  Google Scholar 

  • Ben Hania W, Ghodbane R, Postec A, Brochier-Armanet C, Hamdi M, Fardeau M, Ollivier B (2011) Cultivation of the first mesophilic representative (“mesotoga”) within the order Thermotogales. Syst Appl Microbiol 34:581–585

    Article  CAS  PubMed  Google Scholar 

  • Benz M, Brune A, Schink B (1998) Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch Microbiol 169:159–165

    Article  CAS  PubMed  Google Scholar 

  • Biddle J, Cardman Z, Mendlovitz H, Albert D, Lloyd K, Boetius A, Teske A (2012) Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J 6:1018–1031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borin S et al (2008) Sulfur cycling and methanogenesis primarily drives microbial colonization of the highly sulfidic Urania deep hypersaline basin in the Mediterranean Sea. Proc Natl Acad Sci USA 106:9151–9156

    Article  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Volz PA (2000) Newly discovered halophilic fungi in the Dead Sea (Israel). In: Seckback J (ed) Journey to diverse microbial worlds. Adaptation to exotic environments. Kluver Academic, Dordrecht, pp 241–252

    Google Scholar 

  • Campanaro S, Vezzi A, Vitulo N, Lauro FM, D’Angelo M, Simonato F, Cestaro A, Malacrida G, Bertoloni G, Valle G, Bartlett DH (2005) Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics 6:122

    Article  PubMed Central  PubMed  Google Scholar 

  • Cita MB (2006) Exhumation of Messinian evaporites in the deep-sea and creation of deep anoxic brine-filled collapsed basins. Sediment Geol 188–189:357–378

    Article  Google Scholar 

  • Colmer AR, Temple KL, Hinkle HE (1950) An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines. J Bacteriol 59:317–328

    CAS  PubMed Central  PubMed  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed Central  PubMed  Google Scholar 

  • Daffonchio D et al (2006) Stratified prokaryote network in the oxic–anoxic transition of a deep-sea halocline. Nature 440:203–207

    Article  CAS  PubMed  Google Scholar 

  • DasSarma S, Capes M, DasSarma P (2008) Haloarchaeal megaplasmids. In: Schwartz E (ed) Megaplasmids. Springer, Berlin/Heidelberg, pp 3–30

    Google Scholar 

  • Deming JW, Baross JA (1993) Deep-sea smokers: windows to a subsurface biosphere. Geochim Cosmochim Acta 57:3219–3230

    Article  CAS  PubMed  Google Scholar 

  • Edwards KJ, Bond PL, Gihrin TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acidic mine drainage. Science 287:1796–1798

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich HL (2002) Geomicrobiology, 4th edn. Marcel Dekker, New York

    Google Scholar 

  • Erauso G, Prieur D, Godfroy A, Raguenes G (1995) Plate cultivation techniques for strictly anaerobic, thermophilic, sulfur-metabolizing archae. In: Robb FT, Place AR (eds) Archaea: a laboratory manual. Thermophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 25–29

    Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica. Article ID 512840, 28 pages. doi:10.1155/2013/512840

  • Fernández-Remolar D, Rodríguez N, Gómez F, Amils R (2003) The geological record of an acidic environment driven by iron hydrochemistry: the Tinto River system. J Geophys Res 108:6. doi:10.1029/2002JE001918

    Google Scholar 

  • Fernández-Remolar D, Morris RV, Gruener JE, Amils R, Knoll AH (2005) The Río Tinto basin, Spain: mineralogy, sedimentary geobiology and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet Sci Lett 240:149–167

    Article  Google Scholar 

  • Flores GE, Wagner I, Liu Y, Reysenbach A-L (2012) Distribution, abundance, and diversity patterns of the thermoacidophilic “Deep-sea Hydrothermal Vent Euryarchaeota 2” (DHVE2). Front Microbiol 3:47

    PubMed Central  PubMed  Google Scholar 

  • Gales G, Chehider N, Joulian C, Battaglia-Brunet F, Cayol J-L, Postec A, Borgomano J, Neria-Gonzalez I, Lomans BP, Ollivier B, Alazard D (2011) Characterization of Halanaerocella petrolearia gen. nov., sp. nov., a new anaerobic moderately halophilic fermentative bacterium isolated from a deep subsurface hypersaline oil reservoir. Extremophiles 15:565–571

    Article  CAS  PubMed  Google Scholar 

  • Godfroy A, Postec A, Raven N (2006) Growth of hyperthermophilic microorganisms for physiological and nutritional studies. In: Rainey FA, Oren A (eds) Methods in microbiology, extremophiles. Academic, Oxford, pp 93–108

    Google Scholar 

  • González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865

    Article  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Torril E, Garcia-Moyano A, Amils R (2005) Phylogeny of prokaryotic microorganisms from the Tinto River. In: Harrison STL, Rawlings DE, Pedersen J (eds) IBS-2005. Compress, Cape Town, pp 737–749

    Google Scholar 

  • Grant WD (1992) Alkaline environments. In: Lederberg J (ed) Encyclopedia of microbiology, vol 2. Academic, New York, pp 73–84

    Google Scholar 

  • Grant WD, Sorokin DY (2011) Distribution and diversity of soda lakes alkaliphiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook, vol 1. Springer, Tokyo/Dordrecht/Heidelberg/London/New York, pp 27–54

    Chapter  Google Scholar 

  • Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84

    Article  CAS  PubMed  Google Scholar 

  • Hébraud M, Potier P (2000) Cold acclimation and cold shock response in psychrotrophic bacteria. In: Inouye M, Yamanaka K (eds) Cold shock response and adaptation. Horizon Scientific Press, Norfolk, pp 41–60

    Google Scholar 

  • Horikoshi H (2011) Enzymes isolated from Alkaliphiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook, vol 1. Springer, Tokyo/Dordrecht/Heidelberg/London/New York, pp 163–181

    Chapter  Google Scholar 

  • Jannasch HW, Wirsen CO (1973) Deep-sea microorganisms: in situ response to nutrient enrichment. Science 180:641–643

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    Article  PubMed  Google Scholar 

  • Kivisto AT, Karp MT (2011) Halophilic anaerobic fermentative bacteria. J Biotechnol 152:114–124

    Article  PubMed  Google Scholar 

  • Krulwich TA, Liu J, Morino M, Fujisawa M, Ito M, Hicks DB (2011) Adaptative mechanisms of extreme alkaliphiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook, vol 1. Springer, Tokyo/Dordrecht/Heidelberg/London/New York, pp 119–139

    Chapter  Google Scholar 

  • La Cono V et al (2011) Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: prokaryotes and environmental settings. Environ Microbiol 13:2250–2289

    Article  PubMed  Google Scholar 

  • Larsen H (1962) Halophilism. In: Gunsalus IC, Stanier RY (eds) The bacteria, vol 4. Academic, New York, pp 297–342

    Google Scholar 

  • Litchfield CD (2004) Microbial molecular and physiological diversity in hypersaline environments. In: Ventosa A (ed) Halophilic microorganisms. Springer, Berlin/Heidelberg, pp 49–58

    Chapter  Google Scholar 

  • Luo H, Robb FT (2011) Thermophilic protein folding systems. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook, vol 1. Springer, Tokyo/Dordrecht/Heidelberg/London/New York, pp 583–599

    Chapter  Google Scholar 

  • Madigan M, Martinko J (2007) Brock biologie des micro-organismes. Pearson Education France, Paris

    Google Scholar 

  • Mikucki JA, Han SK, Lanoil BD (2011) Ecology of psychrophiles: subglacial and permafrost environments. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook, vol 1. Springer, Tokyo/Dordrecht/Heidelberg/London/New York, pp 755–775

    Chapter  Google Scholar 

  • Moreno ML, Perez D, Garcia MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3:38–51

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nogi Y (2011) Taxonomy of psychrophiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook, vol 2. Springer, Tokyo/Dordrecht/Heidelberg/London/New York, pp 777–792

    Chapter  Google Scholar 

  • Ollivier B, Caumette P, Garcia JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oren A (2006) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7

    Article  Google Scholar 

  • Oren A (2011) Ecology of halophiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook, vol 1. Springer, Tokyo/Dordrecht/Heidelberg/London/New York, pp 343–361

    Chapter  Google Scholar 

  • Oren A, Gurevich P, Azachi M, Henis Y (1992) Microbial degradation of polluants at high salt concentrations. Biodegradation 3:387–398

    Article  CAS  Google Scholar 

  • Price PB (2007) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231

    Article  CAS  PubMed  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  CAS  PubMed  Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A (2001) (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometall 59:159–175

    Article  CAS  Google Scholar 

  • Sass AM, Sass H, Coolen MJL, Cypionka H, Overmann J (2001) Microbial communities in the chemocline of hypersaline deep-sea basin (Urania Basin, Mediterranean Sea). Appl Environ Microbiol 67:5392–5402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shivanand P, Mugeraya G (2011) Halophilic bacteria and their compatible solutes – osmoregulation and potential applications. Curr Microbiol 100:1516–1521

    CAS  Google Scholar 

  • Simonato F, Campanaro S, Lauro FM, Vezzi A, D’Angelo M, Vitulo N, Valle G, Bartlett DH (2006) Piezophilic adaptation: a genomic point of view. J Biotechnol 126:11–25

    Article  CAS  PubMed  Google Scholar 

  • Stetter KO (2011) History of discovery of hyperthermophiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook, vol 1. Springer, Tokyo/Dordrecht/Heidelberg/London/New York, pp 403–426

    Chapter  Google Scholar 

  • Van Der Wielen PWJJ et al (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    Article  PubMed  Google Scholar 

  • Vargas C, Calderon MI, Capote N, Carrasco R, Garcia R, Moron MJ, Ventosa A, Nieto JJ (2004) Genetics of osmoadaptation by accumulation of compatible solutes in the moderate halophile Chromohalobacter salexigens: its potential in agriculture under osmotic stress conditions. In: Ventosa A (ed) Halophilic microorganisms. Springer, Berlin/Heidelberg, pp 135–153

    Chapter  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836

    Article  CAS  Google Scholar 

  • Wiegel J (2011) Anaerobic alkaliphiles and alkaliphilic poly-extremophiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook, vol 1. Springer, Tokyo/Dordrecht/Heidelberg/London/New York, pp 81–97

    Chapter  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yayanos AA (1986) Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci U S A 83:9542–9546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Luc Cayol or Bernard Ollivier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cayol, JL. et al. (2015). The Extreme Conditions of Life on the Planet and Exobiology. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_10

Download citation

Publish with us

Policies and ethics