Skip to main content

Abstract

The chapter deals with chemical mechanisms that help to control intra- and interspecific interactions with respect to predaceous diving beetles. Apart from chemical receptors and senses within Dytiscidae there are described intraspecific (pheromones) and especially interspecific interactions with respect to this water beetle family. The last group of behavioral modifying compounds includes kairomones and allomones. Allomone constituents from pygidial glands, prothoracic defensive glands, and pupal glands are completely compiled for a large group of predaceous diving beetles. With respect to the natural compounds, their chemistry, distribution within Hydradephaga, biological activities, and especially their significance for dytiscids are discussed. In addition, further secondary compounds from these beetles are presented, including epicuticular lipids or pigments that may be responsible for the coloration of the adult beetles and their larvae. Finally, the microorganisms and their secondary metabolites that are associated with predaceous diving beetles are presented. The described microorganisms range from culturable to non-culturable taxa.

Wenn man einen solchen Kefer [Cybister lateralimarginalis] fängt, so lässt er insgemein zwischen dem Hals-Schild eine blaulichte Materie hervor fliessen, welche einen widerwärtigen Geruch von sich giebt und vielleicht Ursache ist, dass diese Kefer alle Zeit einen eckelhaften Gestank haben. [If such a beetle Cybister lateralimarginalis is caught, between the pronotum a bluish fluid appears which is characterized by a disagreeable odor that is probably responsible for the nauseous stench of the whole beetle.],

Rösel von Rosenhof

I must tell you what happened … in my early entomological days. Under a piece of bark I found two carabi (I forget which) and caught one in each hand, when … I saw a sacred Panagæus crux major. I could not bear to give up either of my Carabi, and to lose Panagæus was out of the question, so that in despair I gently sized one of the carabi between my teeth, when to my unspeakable disgust and pain the little inconsiderate beast squirted his acid down my throat and I lost both Carabi and Panagus!,

Charles Darwin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Åbjörnsson K, Wagner BMA, Axelsson A, Bjerselius R, Olsén KH (1997) Response of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111:166–171

    Google Scholar 

  • Adron JW, Mackie AM (1978) Studies on the chemical nature of feeding stimulants for rainbow trout, Salmo gairdneri Richardson. J Fish Biol 12:303–310

    CAS  Google Scholar 

  • Alarie Y, Joly H, Dennie D (1998) Cuticular hydrocarbon analysis of the aquatic beetle Agabus anthracinus Mannerheim (Coleoptera: Dytiscidae). Can Entomol 130:615–629

    Google Scholar 

  • Armold MT, Blomquist GJ, Jackson LL (1969) Cuticular lipids of Insetcs – III. The surface lipids of the aquatic and terrestrial life forms of the big stonefly, Pteronarcys californica Newport. Comp Biochem Physiol 31:685–692

    CAS  Google Scholar 

  • Arts MT, Maly EJ, Pasitschniak M (1981) The influence of Acilius (Dytiscidae) predation on Daphnia in a small pond. Limnol Oceanogr 26:1172–1175

    Google Scholar 

  • Attygalle AB, Jessen K, Bestmann HJ, Buschinger A, Maschwitz U (1996) Oily substances from gastral intersegmental glands of the ant Pachycondyla tridenta (Ponerinae): lack of pheromone function in tandem running and antibiotic effects but further evidence for lubricative function. Chemoecology 7:8–12

    CAS  Google Scholar 

  • Attygalle AB, Wu X, Rzicka J, Rao S, Garcia S, Herath K, Meinwald J, Maddisson D, Will KW (2004) Defensive chemicals of two species of Trachypachus MOTSCHULSKI. J Chem Ecol 30:577–588

    CAS  PubMed  Google Scholar 

  • Bagnères AG, Wicker-Thomas C (2010) Chemical taxonomy with hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 121–162

    Google Scholar 

  • Balke M, Larson DJ, Hendrich L (1997) A review of the new Guinea species of Laccophilus Leach 1815 with notes on regional melanism (Coleoptera Dytiscidae). Trop Zool 10:295–320

    Google Scholar 

  • Barbier M (1987) Synthesis of Z-marginalin and identification of the natural product as the E isomer. Liebigs Ann Chem 1987:545–546

    Google Scholar 

  • Barbier M (1990) Marginalin, a substance from the pygidial glands of Dytiscus marginalis (Coleoptera): molecular associations with polyamines in vitro. Z Naturforsch 45b:1455–1456

    Google Scholar 

  • Bauer L (1938) Geschmacksphysiologische Untersuchungen an Wasserkäfern. Z Vgl Physiol 26:107–120

    CAS  Google Scholar 

  • Baumgarten J (1995) Vergleichende chemische Untersuchungen der Naturstoffe aus den Prothorakalwehrdrüsen der Laccophilinae und Hydroporinae (Dytiscidae, Coleoptera), Diploma thesis, University of Bayreuth

    Google Scholar 

  • Baumgarten J, Schaaf O, Dettner K (1997) Morphologie und Wehrstoffchemie der Prothorakaldrüsen von Agabus affinis (Payk.), Hyphydrus ovatus (L.) und Laccophilus minutus (L.) (Coleoptera: Dytiscidae). Mitt DGAAE 11:541–544

    Google Scholar 

  • Beament JWL (1976) The ecology of cuticle. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam, pp 359–374

    Google Scholar 

  • Behrend K (1971) Riechen in Wasser und in Luft bei Dytiscus marginalis L. Z Vgl Physiol 75:108–122

    Google Scholar 

  • Berthier S (2007) Iridescences – the physical colors of insects. Springer, New York

    Google Scholar 

  • Bertrand H (1928) Les larves et nymphes des Dytiscides, Hygrobiides et Haliplides. Encyclopédie Entomologique 10:1–366

    Google Scholar 

  • Beutel RG, Balke M, Steiner ES Jr (2006) The systematic position of Meruidae (Coleoptera, Adephaga) and the phylogeny of the smaller aquatic adephagan beetle families. Cladistics 22:102–131

    Google Scholar 

  • Blomquist GJ (2010) Structure and analysis of insect hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 19–34

    Google Scholar 

  • Blum MS (1981) Chemical defenses of arthropods. Academic, New York

    Google Scholar 

  • Blunck H (1909) Färbungsvariationen bei Dytiscus marginalis Linn. Zool Anz 34:337–345

    Google Scholar 

  • Blunck H (1911) Zur Kenntnis der Natur und Herkunft des “milchigen Secrets” am Prothorax des Dytiscus marginalis L. Zool Anz 37:112–113

    Google Scholar 

  • Blunck H (1912a) Die Schreckdrüsen des Dytiscus und ihr Secret. I. Teil. Z Wiss Zool Abt A C:493–508

    Google Scholar 

  • Blunck H (1912b) Das Geschlechtsleben des Dytiscus marginalis L. Die Begattung. Z Wiss Zool Abt A 102:169–248

    Google Scholar 

  • Blunck H (1917) Die Schreckdrüsen des Dytiscus und ihr Secret, Zweiter und letzter Teil. Z Wiss Zool Abt A 117:205–256

    Google Scholar 

  • Blunck H (1922a) Die Lebensgeschichte der im Gelbrand schmarotzenden Saitenwürmer. Zool Anz 54:111–149

    Google Scholar 

  • Blunck H (1922b) Zur Biologie des Tauchkäfers Cybister lateralimarginalis Deg. nebst Bemerkungen über C. japonicus Sharp, C. tripunctatus Oliv. und C. brevis Aubé. Zool Anz 55(45–66):93–124

    Google Scholar 

  • Blunck H (1923a) Die Entwicklung des Dytiscus marginalis L. vom Ei bis zur Imago. 2. Teil. Die Metamorphose (B. Das Larven- und das Puppenleben). Z Wiss Zool Abt A 121:172–392

    Google Scholar 

  • Blunck H (1923b) Krankheiten, Feinde und Schmarotzer des Gelbrands. Zool Anz 57:296–328

    Google Scholar 

  • Bobylev MM, Bobyleva LI, Strobel GA (1996) Synthesis and bioactivity of analogs of maculosin, a host-specific phytotoxin produced by Alternaria alternata on Spotted Knapweed (Centaurea maculosa). J Agric Food Chem 44:3960–3964

    CAS  Google Scholar 

  • Bobylev MM, Bobyleva LI, Cutler HG, Cutler SJ, Strobel GA (2000) Effects of synthetic congeners of the natural product phytotoxins maculosin-1 and -2 on growth of wheat coleoptile (Triticum aestivum L. cv. Waeland) In: Spencer NR (ed) Proceedings of the X international symposium on biological control of weeds, July 1999. Montana State University, Bozeman, Montana, USA, pp 209–214

    Google Scholar 

  • Borowsky B, Borowsky R (1987) The reproductive behaviors of the amphipod crustacean Gammarus palustris (Bousfield) and some insights into the nature of their stimuli. J Exp Mar Biol Ecol 107:131–144

    Google Scholar 

  • Brancucci M, Ruhnau S (1985) Studies on the genus Lancetes. 1. Additional notes on Lancetes angusticollis (Curtis) and description of the pupa (Coleoptera, Dytiscidae). Proc Acad Nat Sci Phila 137:46–52

    Google Scholar 

  • Breithaupt T, Thiel M (eds) (2011) Chemical communication in crustaceans. Springer, New York

    Google Scholar 

  • Brönmark C, Hansson LA (eds) (2012) Chemical ecology in aquatic systems. Oxford University Press, Oxford

    Google Scholar 

  • Budavari S, O’Neill MJ, Smith A, Heckelman PE (1989) The Merck index, 11th edn. Merck, Rahway

    Google Scholar 

  • Burks RL, Lodge DM (2002) Cued in: advances and opportunities in freshwater chemical ecology. J Chem Ecol 28:1901–1917

    CAS  PubMed  Google Scholar 

  • Burmeister EG (1976) Der Ovipositor der Hydradephaga (Coleoptera) und seine phylogenetische Bedeutung unter besonderer Berücksichtigung der Dytiscidae. Zoomorphologie 85:165–257

    Google Scholar 

  • Casper A (1913) Die Körperdecke und die Drüsen von Dytiscus marginalis L. Z Wiss Zool Abt A:387–508

    Google Scholar 

  • Chadha MS, Joshi NK, Mamdapur VR, Sipahimalani AT (1970) C-21 Steroids in the defensive secretions of some Indian water beetles –II*. Tetrahedron 26:2061–2064

    CAS  Google Scholar 

  • Chapman JC, Lockley WJS, Rees HH, Goodwin TW (1977) Stereochemistry of olefinic bond formation in defensive steroids of Acilius sulcatus (Dytiscidae). Eur J Biochem 81:293–298

    CAS  PubMed  Google Scholar 

  • Chivers DP, Smith RJF (1998) Chemical alarm signalling in aquatic predator–prey systems: a review and prospectus. Ecoscience 5:338–352

    Google Scholar 

  • Chivers DP, Brown GE, Smith RJF (1996) The evolution of chemical alarm signals: attracting predators benefits alarm signal senders. Am Nat 148:649

    Google Scholar 

  • Classen R, Dettner K (1983) Pygidial defensive titer and population structure of Agabus bipustulatus L and Agabus paludosus F. (Coloeptera, Dytiscidae). J Chem Ecol 9:201–209

    CAS  PubMed  Google Scholar 

  • Cochran DG (1975) Excretion in insects. In: Candy DJ, Kilby BA (eds) Insect biochemistry and function. Chapman & Hall, London, pp 179–281

    Google Scholar 

  • Crespo JG (2011) A review of chemosensation and related behavior in aquatic insects. J Insect Sci 11:1–39

    Google Scholar 

  • Davids C, Di Sabatino A, Gerecke R, Gledhill T, Smit H, van der Hammen H (2007) 7. Acari: Hydrachnidia, Süßwasserfauna von Mitteleuropa 7/2-1, Elsevier, Spektrum, Heidelberg, pp 421–284

    Google Scholar 

  • de Brabander HF, Poelmans S, Schilt R, Stephany RW, Bizec BL, Draisci R, Sterk SS, van Ginkel LA, Courtheyn D, van Hoof N, Macri A, de Wasch K (2004) Presence and metabolism of the anabolic steroid boldenone in various animals species: a review. Food Addit Contam 2004:1–11

    Google Scholar 

  • Dettner K (1979) Chemotaxonomy of water beetles based on their pygidial gland constituents. Biochem Syst Ecol 7:129–140

    CAS  Google Scholar 

  • Dettner K (1985) Ecological and phylogenetic significance of defensive compounds from pygidial glands of hydradephaga (Coleoptera). Proc Acad Nat Sci Phila 137:156–171

    Google Scholar 

  • Dettner K (1987) Chemosystematics and evolution of beetle chemical defenses. Annu Rev Entomol 32:17–48

    CAS  Google Scholar 

  • Dettner K (1997a) Insecta: Coleoptera: Noteridae. In: Schwoerbel E, Zwick P (eds) Brauer – Süßwasserfauna Europas. Fischer, Stuttgart, pp 99–126

    Google Scholar 

  • Dettner K (1997b) Insecta: Coleoptera: Hygrobiidae. In: Schwoerbel E, Zwick P (eds) Brauer – Süßwasserfauna Europas. Fischer, Stuttgart, pp 129–144

    Google Scholar 

  • Dettner K (2010) Chemical defense and toxins of lower terrestrial and freshwater animals. In: Mander L, Lui HW (eds) Comprehensive natural products II: chemistry and biology, vol 4. Elsevier, Oxford, pp 387–410

    Google Scholar 

  • Dettner K (2011) Potential pharmaceuticals from insects and their co-occurring microorganisms. In: Vilcinskas A (ed) Insect biotechnology, series: biologically-inspired systems, vol 2. Springer, Dordrecht

    Google Scholar 

  • Dettner K, Böhner M (2009) Die Pygidialdrüse der Wassertreter (Coleoptera: Haliplidae): Morphologie, Chemie, Funktion und phylogenetische Bedeutung. Contr Nat Hist 12:437–460

    Google Scholar 

  • Dettner K, Hopstätter B (1980) Das Zustandekommen der Grünfärbung bei der Schwimmkäferunterfamilie der Laccophilinae (Coleoptera: Dytiscidae). Entomologische Zeitschrift 90:225–232

    Google Scholar 

  • Dettner K, Liepert C (1994) Chemical Mimicry and camouflage. Annu Rev Entomol 39:129–154

    CAS  Google Scholar 

  • Dettner K, Peters W (2010) Lehrbuch der Entomologie, 2nd edn. Spektrum Verlag/Elsevier, Heidelberg

    Google Scholar 

  • Dettner K, Schwinger G (1977) Hohe 3-Indolylessigsäure- und Phenylessigsäure-Konzentrationen in den Pygidialdrüsen von Wasserkäfern (Dytiscidae). Z Naturforsch 32c:453–455

    CAS  Google Scholar 

  • Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst G (2008) The diversity of reproductive parasites among arthropodes: Wolbachia do not walk alone. BMC Biol 6:27

    PubMed Central  PubMed  Google Scholar 

  • Eisner T (1970) Chemical defense against predation in arthropods. In: Sondheimer E, Simeone JB (eds) Chemical ecology. Academic, New York, pp 157–217

    Google Scholar 

  • Eisner T, Eisner M, Siegler M (2005) Secret weapons. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Elert EV (2012) Information conveyed by chemical cues. In: Hansson LA, Brönmark C (eds) Chemical ecology in aquatic systems. Oxford University Press, Oxford, pp 19–38

    Google Scholar 

  • Ferrari MCO, Wisenden BD, Chivers DP (2010) Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88:698–724

    Google Scholar 

  • Fescemyer H, Mumma RO (1983) Regeneration and biosynthesis of dytiscid defensive agents (Coleoptera: Dytiscidae). J Chem Ecol 9:1449–1464

    CAS  PubMed  Google Scholar 

  • Forsyth DJ (1968) The structure of the defence glands in the Dytiscidae, Noteridae, Haliplidae and Gyrinidae (Coleoptera). Trans Roy Entomol Soc Lond 120:159–181

    Google Scholar 

  • Forsyth DJ (1970) The structure of the defence glands of the Cicindelidae, Amphizoidae and Hygrobiidae (Insecta: Coloeptera). J Zool (Lond) 160:51–69

    Google Scholar 

  • Franciscolo ME (1979) Coleoptera Haliplidae, Hygrobiidae, Gyrinidae, Dytiscidae, Fauna D’Italia, vol XIV. Calderini, Bologna

    Google Scholar 

  • Francke W, Dettner K (2005) Chemical Signalling in Beetles. In: Topics in current chemistry. Band 240, Springer, Berlin, pp 85–166

    Google Scholar 

  • Fukatsu T, Nikoh N, Kawai R, Koga R (2000) The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 66:2748–2758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galewski K (1971) A study on morphobiotic adaptations of European species of the Dytiscidae (Coleoptera). Polskie Pismo Entomologiczne XLI/3:487–667

    Google Scholar 

  • Gebhardt K, Schimana J, Müller J, Fiedler HP, Kallenborn HG, Holzenkämpfer M, Krastel P, Zeeck A, Vater J, Höltzel A, Schmid DG, Rheinheimer J, Dettner K (2002) Screening for biologically active metabolites with endosymbiotic bacilli isolated from arthropods. FEMS Microbiol Lett 217:199–205

    CAS  PubMed  Google Scholar 

  • Gerhart DJ, Bondura ME, Commito JA (1991) Inhibition of sunfish feeding by defensive steroids from aquatic beetles: structure-activity relationships. J Chem Ecol 17:1363–1370

    CAS  PubMed  Google Scholar 

  • Geus A (1969) 57. Teil Sporentierchen, Sporozoa. Die Gregarinida der land- und süßwasserbewohnenden Arthoüoden Mitteleuropas. Die Tierwelt Deutschlands, VEB Fischer, Jena

    Google Scholar 

  • Ghidini G (1957) Ghiandole pigidiali aromatiche in Coleotteri Dytiscidae Bolletino della Societa. Entomol Ital 87:67–69

    Google Scholar 

  • Giglio A, Brandmayr P, Dalpozzo R, Sindona G, Tagarelli A, Talarico F, Brandmayr TZ, Ferrero EA (2009) The defensive secretion of Carabus lefebvrei Dejean 1826 pupa (Coleoptera, Carabidae): gland ultrastructure and chemical identification. Microsc Res Tech 72:351–361

    CAS  PubMed  Google Scholar 

  • Giglio A, Brandmayr P, Talarico F, Brandmayr TZ (2011) Current knowledge on exocrine glands in carabid beetles: structure, function and chemical compounds. ZooKeys 100:193–201

    PubMed  Google Scholar 

  • Gronquist M, Meinwald J, Eisner T, Schroeder FC (2005) Exploring uncharted terrain in nature’s structure space using capillary NMR spectroscopy; 13 steroids from 50 fireflies. J Am Chem Soc 127:10810–10811

    CAS  PubMed  Google Scholar 

  • Gross EM (2011) Alles anders unter Wasser? Chemische Ökologie im Vergleich. Zusammenfassungen der Jahrestagung 2010 der Deutschen Gesellschaft für Limnologie, pp 200–207

    Google Scholar 

  • Guse GW, Honomichl K (1980) Die digitiformen Sensillen auf dem Maxillarpalpus von Coleoptera II. Feinstruktur bei Agabus bipustulatus (L.) und Hydrobius fuscipes (L.). Protoplasma 103:55–68

    Google Scholar 

  • Gyermek L, Soyka LF (1975) Steroid anaesthetics. Anaesthesiology 42:331–344

    CAS  Google Scholar 

  • Harrison JG (2012) Cleaning and preparing adult beetles (Coleoptera) for light and scanning electron microscopy. Afr Entomol 20:395–401

    Google Scholar 

  • Harrison NL, Majewska MD, Harrington JW, Barker JL (1987) Structure-activity relationships for steroid interaction with the γ-aminobutyric acidA receptor complex. J Pharmacol Exp Ther 241:346–353

    CAS  PubMed  Google Scholar 

  • Healey M (1984) Fish predation on aquatic insects. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger Press, New York, pp 255–288

    Google Scholar 

  • Herbst C, Baier B, Tolasch T, Steidle JLM (2011) Demonstration of sex pheromones in the predaceous diving beetle Rhantus suturalis (MacLeay 1825) (Dytiscidae). Chemoecology 21:19–23

    CAS  Google Scholar 

  • Herwig BR, Schindler DE (1996) Effects of aquatic insect predators on zooplankton in fishless ponds. Hydrobiologia 324:141–147

    Google Scholar 

  • Hicks B, Larson DJ (1991) The rectum as a hydrostatic organ in the predaceous diving beetle Ilybius Erichson (Coleoptera: Dytiscidae). Coleopts Bull 45:274–278

    Google Scholar 

  • Hinton HE, Gibbs DF (1971) Diffraction gratings in gyrinid beetles. J Insect Physiol 17:1023–1035

    Google Scholar 

  • Hodgson ES (1951) Reaction thresholds of an aquatic beetle, Laccophilus maculosus Germ. to salts and alcohols. Physiol Zool 24:131–140

    CAS  PubMed  Google Scholar 

  • Hodgson ES (1953) A study of chemoreception in aqueous and gas phases. Biol Bull 105:115–127

    CAS  Google Scholar 

  • Inoda T (2012) Predaceous diving beetle, Dytiscus sharpi sharpi (Coleoptera: Dytiscidae) larvae avoid cannibalism by recognizing prey. Zool Sci 29:547–552

    PubMed  Google Scholar 

  • Ivanov VP (1966) Ultrastructural organization of chemo-receptive antennal sensille of the beetle Acilius sulcatus. J Evol Biochem Phys+ St Petersburg 2:462–472

    Google Scholar 

  • Ivarsson P, Henrikson BI, Stenson JAE (1996) Volatile substances in the pygidial secretion of gyrinid beetles (Coleoptera: Gyrinidae). Chemoecology 7:191–193

    CAS  Google Scholar 

  • Jacob J, Hanssen HP (1986) Distribution and variability of cuticular hydrocarbons within the Coleoptera. Biochem Syst Ecol 14:207–210

    CAS  Google Scholar 

  • Jakob F (2008) Isolierung und Charakterisierung von potentiellen Endosymbionten aus Entwicklungsstadien der Wasserkäfer Acilius sulcatus und Dytiscus marginalis. Diploma thesis, University of Bayreuth, p 92

    Google Scholar 

  • Jensen JC, Zacharuk RY (1991) The fine structure of uniporous and nonporous pegs on the distal antennal segment of the diving beetle Graphoderus occidentalis Horn (Coleoptera: Dytiscidae). Can J Zool 69:334–352

    Google Scholar 

  • Jungnickel H (1992) Exokrine Systeme hydradephager Wasserkäfer. Diploma thesis, University of Bayreuth, p 104

    Google Scholar 

  • Jungnickel H (1998) Die Prothorakalwehrdrüsen hydradephager Dytisciden. Ph.D. thesis, University of Bayreuth, p 178

    Google Scholar 

  • Jungnickel H, Dettner K (1997) Identifizierung von Steroidverbindungen aus dem Wehrsekret der Wasserkäferart Agabus guttatus (PAYK.) (Coleoptera: Dytiscidae) unter Berücksichtigung einer möglichen Beteiligung von Mikroorganismen an der Steroidbiosynthese. Mitt DGAAE 11:895–898

    Google Scholar 

  • Kadavy DR, Hornby JM, Haverkost T, Nickerson KW (2000) Natural antibiotic resistance of bacteria isolated from larvae of the oil fly, Helaeomyia petrolei. Appl Environ Microbiol 2000:4615–4619

    Google Scholar 

  • Kasumyan AO, Døving KB (2003) Taste preferences in fishes. Fish and Fisheries 4:289–347

    Google Scholar 

  • Kayser H (1985) Pigments. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 10, Biochemistry. Pergamon, Oxford, pp 367–415

    Google Scholar 

  • Kayser H, Dettner K (1984) Biliverdin IXγ in beetles (Dytiscidae: Laccophilinae). Comp Biochem Physiol 77:639–643

    Google Scholar 

  • Kehl S, Dettner K (2003) Predation by pioneer water beetles (Coleoptera, Dytiscidae) from sandpit ponds, based on crop-content analysis and laboratory experiments. Arch Hydrobiol 158:109–126

    Google Scholar 

  • Kicklighter C (2012) Chemical defensives against predators. In: Brönmark C, Hansson LA (eds) Chemical ecology in aquatic systems. Oxford University Press, Oxford, pp 236–249

    Google Scholar 

  • Kieslich K (1976) Microbial transformations of non-steroid cyclic compounds. Thieme, Stuttgart

    Google Scholar 

  • Kikuchi Y, Fukatsu T (2005) Rickettsia infection in natural leech populations. Microb Ecol 49:265–271

    CAS  PubMed  Google Scholar 

  • König H, Varma A (2006) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin

    Google Scholar 

  • Korschelt E (1923) Bearbeitung einheimischer Tiere. 1. Monographie: Der Gelbrand Dytiscus marginalis L., 1. Band. W. Engelmann, Leipzig, p 863

    Google Scholar 

  • Korschelt E (1924) Bearbeitung einheimischer Tiere. 1. Monographie: Der Gelbrand Dytiscus marginalis L. 2. Band. W. Engelmann, Leipzig, p 964

    Google Scholar 

  • Kovac D, Maschwitz U (1990) Secretion-grooming in aquatic beetles (Hydradephaga): a chemical protection against contamination of the hydrofuge respiratory region. Chemoecology 1:131–138

    CAS  Google Scholar 

  • Küchler SM, Kehl S, Dettner K (2009) Characterization and localization of Rickettsia sp. n water beetles of genus Deronectes (Coleoptera: Dytiscidae). FEMS Microbiol Ecol 68:201–211

    PubMed  Google Scholar 

  • Kuhn C, Schnepf E, Schildknecht H (1972) Über Arthropoden-Abwehrstoffe. LVIII Zur Feinstruktur der Pygidialdrüsen des Gelbrandkäfers (Dytiscus marginalis L., Dytiscidae, Coleoptera). Z Zellforsch 132:563–576

    CAS  PubMed  Google Scholar 

  • Kutalek R, Kassa A (2005) The use of Gyrinids and Dytiscids for stimulating breast growth in East Africa. J Ethnobiol 25:115–128

    Google Scholar 

  • Lan NC, Gee KW (1994) Neuroactive Steroid Actions at the GABAA Receptor. Horm Behav 28:537–544

    CAS  PubMed  Google Scholar 

  • Larson DJ (1996) Color patterns of dytiscine water beetles (Coleoptera: Dytiscidae, Dytiscinae) of arroyos, billabongs and wadis. Coleopts Bull 50:231–235

    Google Scholar 

  • Laskin AI, Lechevalier HA (1973) Handbook of microbiology, vol III, Microbial products. CRC Press, Cleveland

    Google Scholar 

  • Laurent P, Braekman JC, Daloze D (2005) Insect chemical defense. In: Topics in current chemistry. Band 240, Springer, Berlin, pp 167–229

    Google Scholar 

  • Lawson ET, Mousseau TA, Klaper R, Hunter MD, Werren JH (2001) Rickettsia associated with male-killing in a buprestid beetle. Heredity 86:497–505

    CAS  PubMed  Google Scholar 

  • Linzen B (1974) The tryptophan-ommochrome pathway in insects. Adv Insect Physiol 10:117–246

    CAS  Google Scholar 

  • Lokensgard J, Smith RL, Eisner T, Meinwald J (1993) Pregnanes from defensive glands of a belostomatid bug. Experientia 49:175–176

    CAS  PubMed  Google Scholar 

  • Lopes SCDN, Federov A, Castanho MARB (2004) Cholesterol modulates maculosin’s orientation in model systems of biological membranes Relevance towards putative molecular recognition. Steroids 69:825–830

    CAS  PubMed  Google Scholar 

  • Lousia M, Selvisabhanayakam, Mathivanan V (2010) Effects of pygidial secretion (zoopesticide) on histopathological changes in the male accessory reproductive glands of adult male insect Odontopus varicornis in relation to reproduction. Toxicol Int 17:22–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lust S (1950) Symphorionte Peritrichen auf Käfern und Wanzen. Zool Jahrb 79:353–436

    Google Scholar 

  • Manteifel YB, Reshetnikov AN (2002) Avoidance of noxious tadpole prey by fish and invertebrate predators: adaptivity of a chemical defence may depend on predator feeding habits. Arch Hydrobiol 153:657–668

    Google Scholar 

  • Maschwitz U (1967) Eine neuartige Form der Abwehr von Mikroorganismen bei Insekten. Naturwissenschaften 54:649

    CAS  PubMed  Google Scholar 

  • Mathis A, Chivers DP, Smith RJF (1995) Chemical alarm signals: Predator Deterrents or predator attractants? Am Nat 145:994–1005

    Google Scholar 

  • Matthes D (1982) Seßhafte Wimpertiere. Neue Brehm-Bücherei, Ziemsen, Wittenberg

    Google Scholar 

  • Meinwald J, Opheim K, Eisner T (1972) Gyrinidal: A sesquiterpenoid aldehyde from the defensive glands of gyrinid beetles. Proc Natl Acad Sci U S A 69:1208–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meinwald J, Huang Q, Vrkoč J, Herath KB, Yang ZC, Schröder F, Attygalle AB, Iyengar VK, Morgan RC, Eisner T (1998) Mirasorvone: a masked 20-ketopregnane from the defensive secretion of a diving beetle (Thermonectus marmoratus). Proc Natl Acad Sci U S A 95:2733–2737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller JR, Mumma RO (1973) Defensive agents of the American water beetles Agabus seriatus and Graphoderus liberus. J Insect Physiol 19:917–925

    CAS  Google Scholar 

  • Miller JR, Mumma RO (1974) Seasonal quantification of the defensive steroid titer of Agabus seriatus (Coleoptera: Dytiscidae). Ann Entomol Soc Am 67:850–852

    CAS  Google Scholar 

  • Miller JR, Mumma RO (1976a) Physiological activity of water beetle defensive agents. I. Toxicity and anesthetic activity of steroids and norsesquiterpenes administered in solution to the minnow Pimephales promelas Raf. J Chem Ecol 2:115–130

    CAS  Google Scholar 

  • Miller JR, Mumma RO (1976b) Physiological activity of water beetle defensive agents. II. Absorption of selected anesthetic steroids and norsesquiterpenes across gill membranes of the minnow Pimephales promelas Raf. J Chem Ecol 2:131–146

    CAS  Google Scholar 

  • Morgan ED (ed) (2004) Biosynthesis in insects. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Müller-Schwarze D (2006) Chemical ecology of vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Naumann H (1955) Der Gelbrandkäfer. Neue Brehm Bücherei, Ziemsen, Wittenberg

    Google Scholar 

  • Needham AE (1978) Insect biochromes: their chemistry and role. In: Rockstein M (ed) Biochemistry of insects. Academic, New York, pp 233–305

    Google Scholar 

  • Newhart AT, Mumma RO (1979) Defensive secretions of three species of Acilius (Coleoptera, Dytiscidae) and their seasonal variations as determined by high-pressure liquid chromatography. J Chem Ecol 5:643–652

    CAS  Google Scholar 

  • Norberg L, Wahlström G, Bäckström T (1987) The anaesthetic potency of 3α-hydroxy-5α-pregnan-20-one and 3α-hydroxy-5β-pregnan-20-one determined with an intravenous EEG-threshold method in male rats. Pharmacol Toxicol 61:42–47

    CAS  PubMed  Google Scholar 

  • O’Neill SL, Hoffmann AA, Werren JH (1997) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford

    Google Scholar 

  • Ochs G (1966) Vom Geruch der Taumelkäfer. Entomologische Blätter 62:14–16

    Google Scholar 

  • Ohba SY, Ohtsuka M, Sunahara T, Sonoda Y, Kawashima E, Takagi M (2012) Differential responses to predator cues between two mosquito species breeding in different habitats. Ecol Entomol 37:410–418

    Google Scholar 

  • Park SH, Strobel GA (1994) Cellular protein receptors of maculosin, a host specific phytotoxin of spotted knapweed (Centaurea maculosa L.). Biochim Biophys Acta 1199:13–19

    CAS  PubMed  Google Scholar 

  • Peckarsky BL (1984) Predator–prey interactions among aquatic insects. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger Press, New York, pp 196–254

    Google Scholar 

  • Pesek J, Funke M, Boland W (2009) 8-hydroxyquinoline-2-carboxylic acid (HQA) from the insect gut impacts bacterial growth via iron chelation. In: 25th Annual Meeting of the International Society of Chemical Ecology, Neuchâtel, Abstract

    Google Scholar 

  • Peters LE (1957) An analysis of the trematode genus Allocreadium Looss with the description of Allocreadium neotenicum nov. from water beetles. J Parasitol 43:136–142

    CAS  PubMed  Google Scholar 

  • Phillips GH (1975) Structure-activity relationships in steroidal anesthetics. J Steroid Biochem 6:607–613

    Google Scholar 

  • Purdy RH, Moorow AL, Blum JR, Paul SM (1990) Synthesis, metabolism, and pharmacological activity of 3α-hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptoneurosomes. J Med Chem 33:1572–1581

    CAS  PubMed  Google Scholar 

  • Quennedey A (1998) Insect epidermal gland cells: ultrastructure and morphogenesis. In: Harrison FW, Locke M (eds) Anatomy of invertebrates, vol 11A, Insecta. Wiley-Liss, New York, pp 177–207

    Google Scholar 

  • Ribera I, Beutel RG, Balke M, Vogler AP (2002) Discovery of Aspidytidae, a new family of aquatic Coloeptera. Proc Roy Soc Lond B Biol 269:2351–2356

    CAS  Google Scholar 

  • Ribera I, Nilsson AN, Vogler AP (2004) Phylogeny and historical biogeography of Agabinae diving beetles (Coleoptera) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 30:545–562

    CAS  PubMed  Google Scholar 

  • Rosen PP (2008) Rosen’s breast pathology, 3rd edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Roughley RE (1990) A systematic revision of species of Dytiscus Linnaeus (Coleoptera: Dytiscidae). Part 1. Classification based on adult stage. Quaest Entomol 26:383–557

    Google Scholar 

  • Schaaf O (1998) Steroidchemie der Schwimmkäfer (Coleoptera: Dytiscidae). Ph.D. thesis, University of Bayreuth, p 181

    Google Scholar 

  • Schaaf O, Dettner K (1997) Microbial diversity of aerobic heterotrophic bacteria inside the foregut of two tyrphophilous water beetle species (Coleoptera: Dytiscidae). Microbiol Res 152:57–64

    Google Scholar 

  • Schaaf O, Dettner K (1998) Transformation of steroids by Bacillus strains isolated from the foregut of water beetles (Coleoptera: Dytiscidae): I. Metabolism of Androst-4-en-3,17-dione (AD). J Steroid Biochem 67:451–465

    CAS  Google Scholar 

  • Schaaf O, Dettner K (2000a) Transformation of steroids by Bacillus strains isolated from the foregut of water beetles (Coleoptera: Dytiscidae): II. Metabolism of 3β-hydroxypregn-5-en-20-one (pregnenolone). J Steroid Biochem 75:187–199

    CAS  Google Scholar 

  • Schaaf O, Dettner K (2000b) Polyunsaturated monoglycerides and a pregnadiene in defensive glands of the water beetles Agabus affinis. Lipids 35:543–550

    CAS  PubMed  Google Scholar 

  • Schaaf O, Baumgarten J, Dettner K (2000) Identification and function of prothoracic exocrine gland steroids of the dytiscid beetles Graphoderus cinereus and Laccophilus minutes. J Chem Ecol 26:2291–2305

    CAS  Google Scholar 

  • Schaller A (1926) Sinnesphysiologische und psychologische Untersuchungen an Wasserkäfern und Fischen. Z Vgl Physiol 4:370–464

    Google Scholar 

  • Scheloske HW (1969) Beiträge zur Biologie, Ökologie und Systematik der Latoulbeniales (Ascomycetes). Parasitologische Schriftenreihe 19:1–176

    Google Scholar 

  • Schildknecht H (1966) 16. Vertebrate hormones as defence substances in Dytiscids. Memoriasdo Instituto Butantan Simposio Internacional 33:121–133

    CAS  Google Scholar 

  • Schildknecht H (1970) Die Wehrchemie von Land- und Wasserkäfern. Angew Chem-Ger Edit 82:17–25

    Google Scholar 

  • Schildknecht H (1976) Chemische Ökologie – Ein Kapitel moderner Naturstoffchemie. Angew Chem-Ger Edit 8:235–272

    Google Scholar 

  • Schildknecht H (1977) Protective substances of arthropods and plants. Pontificiae Academiae Scientiarum Scripta Varia 41:1–49

    Google Scholar 

  • Schildknecht H, Birringer H (1969) Über die Steroide des Schlammschwimmers Ilybius fenestratus. Chem Ber 102:1859–1864

    CAS  Google Scholar 

  • Schildknecht H, Bühner R (1968) Über ein Glykoproteid in den Pygidialwehrblasen des Gelbrandkäfers. Z Naturforsch 23b:1209–1213

    Google Scholar 

  • Schildknecht H, Hotz D (1967) Identifizierung der Nebensteroide des Protho-rakalwehrdrüsensystems des Gelbrandkäfers Dytiscus marginalis. Angew Chem-Ger Edit 79:902–903

    Google Scholar 

  • Schildknecht H, Hotz D (1970a) Das Prothorakalwehrsekret des Schwimmkäfers Agabus bipustulatus. Chem Ztg 94:130

    CAS  Google Scholar 

  • Schildknecht H, Hotz D (1970b) Naturally occurring steroid-isobutyrates. Excerpta Media Int Congs Ser 219:158–166

    Google Scholar 

  • Schildknecht H, Körnig W (1968) Wehrstoffe des Prothorakalwehrdrüsensekretes einer mexikanischen Cybister-Art. Angew Chem-Ger Edit 80:45–46

    Google Scholar 

  • Schildknecht H, Tacheci H (1970) Stark blutdrucksenkende Wirkstoffe aus den Prothorakalwehrdrüsen des Schwimmkäfers Colymbetes fuscus. Chem Ztg 94:101–102

    CAS  Google Scholar 

  • Schildknecht H, Tacheci H (1971) Colymbetin, a new defensive substance of the water beetle, Colymbetes fuscus, that lowers blood pressure – LII. J Insect Physiol 17:1889–1896

    CAS  PubMed  Google Scholar 

  • Schildknecht H, Weis KH (1962) Zur Kenntnis der Pygidialblasensubstanzen vom Gelbrandkäfer (Dytiscus marginalis L). Z Naturforsch 17b:448–452

    CAS  Google Scholar 

  • Schildknecht H, Holoubek K, Wolkenstörfer M (1962) Über einen Inhaltsstoff der Pygidialblasen vom Gelbrandkäfer. Z Naturforsch 17b:81–83

    CAS  Google Scholar 

  • Schildknecht H, Siewerdt R, Maschwitz U (1966) Ein Wirbeltierhormon als Wehrstoff des Gelbrandkäfers (Dytiscus marginalis). Angew Chem-Ger Edit 78:392

    Google Scholar 

  • Schildknecht H, Birringer H, Maschwitz U (1967a) Testosteron als Abwehrstoff des Schlammschwimmers Ilybius. Angew Chem-Ger Edit 79:579–580

    Google Scholar 

  • Schildknecht H, Hotz D, Maschwitz U (1967b) Die C21-Steroide der Prothorakalwehrdrüsen von Acilius sulcatus. Z Naturforsch 22b:938–944

    Google Scholar 

  • Schildknecht H, Siewerdt R, Maschwitz U (1967c) Cybisteron, ein neues Arthropoden-Steroid. Liebigs Ann Chem 703:182–189

    CAS  Google Scholar 

  • Schildknecht H, Tacheci H, Maschwitz U (1969) 4-Pregnen-15α,20ß-diol-3on im Wehrsekret eines Schwimmkäfers. Naturwissenschaften 56:37

    CAS  PubMed  Google Scholar 

  • Schildknecht H, Körnig W, Siewerdt R, Krauss D (1970) Aufklärung des gelben Pygidialwehrdrüsen-Farbstoffes des Gelbrandkäfers (Dytiscus marginalis). Liebigs Ann Chem 734:116–125

    CAS  Google Scholar 

  • Schildknecht H, Krebs G, Birringer H (1971) Tryptophan als Precursor des Insekten-Alkaloids 8-Hydroxychinolin-carbonsäure-2-methylester aus Ilybius fenestratus. Chem Ztg 95:332–333

    CAS  Google Scholar 

  • Schildknecht H, Neumaier H, Tauscher B (1972a) Gyrinal, die Pygidialdrüsensubstanz der Taumelkäfer (Coleoptera, Gyrinidae). Liebigs Ann Chem 756:155–161

    CAS  Google Scholar 

  • Schildknecht H, Tauscher B, Krauss D (1972b) Der Duftstoff des Taumelkäfers Gyrinus natator L. Chemikerzeitung 96:33–35

    CAS  Google Scholar 

  • Schildknecht H, Holtkotte H, Krauß D, Tacheci H (1975) Platambin, ein Wehrstoff des Schwimmkäfers Platambus maculatus (Coleoptera: Dytiscidae). Liebigs Ann Chem 1975:1850–1862

    Google Scholar 

  • Schildknecht H, Weber B, Dettner K (1983) Über Arthropoden-Abwehrstoffe, LXV. Die Chemische Ökologie des Grundschwimmers Laccophilus minutus. Z Naturforsch 38b:1678–1685

    CAS  Google Scholar 

  • Schneider A (2008) Kontaktwinkelmessungen an Dytisciden (Coleoptera) unter besonderer Berücksichtigung exokriner Drüsen. Bachelor thesis, University of Bayreuth, p 53

    Google Scholar 

  • Seago AE, Brady P, Vigneron JP, Schultz TD (2009) Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J R Soc Interface 6, Suppl. 2, S165–S184

    Google Scholar 

  • Selye H (1941a) Anesthetic effect of steroid hormones. Proc Soc Exp Biol Med 46:116–121

    CAS  Google Scholar 

  • Selye H (1941b) Studies concerning the anesthetic action of steroids hormones. J Pharmacol Exp Ther 73:127–141

    CAS  Google Scholar 

  • Selye H (1942) Correlations between the chemical structure and the pharmacological actions of the steroids. Endocrinology 30:437–453

    CAS  Google Scholar 

  • Selye H, Heard RDH (1943) The fish assay for the anesthetic effect of the steroids. Anesthesiology 4:36–47

    CAS  Google Scholar 

  • Shackleton CH, Homoki J, Taylor NF (1987) A paradox: elevated 21-hydroxypregnenolone production in newborns with 21-hydroxylase deficiency. Steroids 49:295–311

    CAS  PubMed  Google Scholar 

  • Sih A (1987) Nutritional ecology of aquatic insect predators. In: Slansky F, Rodriguez JG (eds) Nutritional ecology of aquatic insects, mites, spiders and related invertebrates. Wiley Interscience, New York, pp 579–607

    Google Scholar 

  • Silberbush A, Markman S, Lewinsohn E, Bar E, Cohen JE, Blaustein L (2010) Predator-released hydrocarbons repel oviposition by a mosquito. Ecol Lett 13:1129–1138

    PubMed  Google Scholar 

  • Sipahimalani AT, Mamdapur VR, Joshi NK, Chadha MS (1970) Steroids in the defensive secretion of the water beetle Cybister limbatus-I. Naturwissenschaften 57:40

    CAS  PubMed  Google Scholar 

  • Smith RL (1973) Aspects of the biology of three species of the genus Rhantus (Coleoptera: Dytiscidae) with special reference to the acoustical behavior of two. Can Entomol 105:909–919

    Google Scholar 

  • Sondheimer E, Simeone JB (1970) Chemical ecology. Academic, New York

    Google Scholar 

  • Sorensen PW, Hoye TH (2010) Phermones in vertebrates. In: Mori K, Mander LN, Liu H (eds) Chemical ecology, comprehensive natural products chemistry II: chemistry and biology. Elsevier Press, Oxford, pp 225–262

    Google Scholar 

  • Spangler PJ (1985) Five new species of the predacious water beetle genus Hydrodessus from Guyana and a key to the species (Coleoptera: Dytiscidae). Proc Acad Nat Sci Phila 137:80–89

    Google Scholar 

  • Staddon BW, Thorne MJ (1979) The metathoracic scent gland system in Hydrocorisae (Heteroptera: Nepomorpha). Syst Entomol 4:239–250

    Google Scholar 

  • Strobel G, Stierle A, Park SH, Cardellina J (1990) Maculosin -a host specific phytotoxin from Alternaria alternata on spotted knapweed. In: Microbes and microbial products as herbicides, vol 439, ACS symposium series. American Chemical Society, Washington, DC, pp 53–62

    Google Scholar 

  • Sun J, Bhushan B (2012) Structure and mechanical properties of beetle wings: a review. RSC Adv 2:12606–12623

    CAS  Google Scholar 

  • Swevers L, Lambert JGD, de Loof A (1991) Synthesis and metabolism of vertebrate-type steroids by tissue of insects: a critical evaluation. Experientia 47:687–698

    CAS  PubMed  Google Scholar 

  • Tassani P, Jänicke U, Ott E, Conzen P (1996) Hämodynamische Wirkungen von 3 unterschiedlichen Dosierungen des Induktionshypnotikums Eltanolon bei koronarchirurgischen Patienten. Anaesthesist 45:249–254

    CAS  PubMed  Google Scholar 

  • Tinbergen N (1936) Eenvoudige Proeven Over De Zintuigfuncties Van Larvae En Imago Van De Geelgerande Watertor. De levende Naturr 41:225–236

    Google Scholar 

  • Tinbergen N (1951) The study of instinct. Oxford University Press, London

    Google Scholar 

  • Urban MC (2008) Salamander evolution across a latitudinal cline in gape-limited predation risk. Oikos 117:1037–1049

    Google Scholar 

  • von der Schulenburg JH, Habig M, Sloggett JJ, Webberley KM, Bertrand D, Hurst GD, Majerus ME (2001) Incidence of male-killing Rickettsia spp. (α-proteobacteria) in the tenspot ladybird beetle Adalia decempunctata L. (Coleoptera: Coccinellidae). Appl Environ Microbiol 67:270–277

    PubMed Central  PubMed  Google Scholar 

  • Warner WB (2010) Degreasing pinned specimens. SCARABS 50:1

    Google Scholar 

  • Weber B (1979) Über Inhaltsstoffe in den Wehrdrüsen von Ilybius fenestratus, Dytiscus marginalis und Laccophilus minutus. Ph.D. thesis, University of Heidelberg, p 164

    Google Scholar 

  • Wesenberg-Lund C (1943) Biologie der Süsswasserinsekten. Nordisk Forlag, Kopenhagen & Springer, Berlin

    Google Scholar 

  • Will KW, Attygalle AB, Herath K (2000) New defensive chemical data for ground beetles (Coleoptera: Carabidae): interpretations in a phylogenetic framework. Biol J Linn Soc 71:459–481

    Google Scholar 

  • Williams DD, Feltmate BW (1992) Aquatic insects. CAB International, Wallingford

    Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour. Cambridge University Press, Cambridge

    Google Scholar 

  • Young FN (1960a) The colors of desert water beetles – environmental effect or protective coloration? Ann Entomol Soc Am 53:422–425

    Google Scholar 

  • Young FN (1960b) Regional melanism in aquatic beetles. Evolution XIV:277–283

    Google Scholar 

  • Young J, Corpéchot C, Perché F, Eychenne B, Haug M, Baulieu EE, Robel P (1996) Neurosteroids in the mouse brain: behavioral and pharmacological effects of a 3β-hydroxysteroid dehydrogenase inhibitor. Steroids 61:144–149

    CAS  PubMed  Google Scholar 

  • Zchori-Fein E, Borad C, Harari A (2006) Oogenesis in the date stone beetle, Coccotrypes dactyliperda, depends on symbiotic bacteria. Physiol Entomol 31:164–169

    Google Scholar 

Download references

Acknowledgements

In order to prepare this manuscript the help of following collaborators and colleagues is highly acknowledged: Dipl.-Biol. J. Baumgarten (Bayreuth), Dr. W. Boidol (Schering AG, Berlin), Prof. Dr. W. Boland (Jena), I. Cichon (Bayreuth), B. Dettner (Bayreuth), A. Falk (Bayreuth), Prof. Dr. H. P. Fiedler (Tübingen), Prof. Dr. W. Francke (Hamburg), PD Dr. F. Hebauer (Deggendorf), E. Helldörfer (Bayreuth), B. Hopstätter (Aachen), Dr. H. Jungnickel (Bayreuth), Dr. S. Kehl (Bayreuth), A. Kirpal (Bayreuth), Dipl.-Chem. P. Krastel (Göttingen), Dr. S. Küchler (Bayreuth), Dr. U. Lacher (Bayreuth), Dipl.-Biol. M. Langer (Bayreuth), A. Liehr (Bayreuth), H. Müller B. Sc. (Bayreuth), Dr. J. G. Müller (Tübingen), Dr. J. Rheinheimer (BASF, Ludwigshafen), Dr. O. Schaaf (Bayreuth), Dr. A. Schierling (Bayreuth), Dr. R. M. Schmidt (BASF, Ludwigshafen), A. Schneider B. Sc. (Bayreuth), Prof. Dr. M. Scriba (Aachen), S. Wagner (Bayreuth), Dr. B. Weber (Heidelberg), Prof. Dr. A. Zeeck (Göttingen)

This paper is dedicated to the four honorable deceased water beetle specialists: Ecopioneer and Field Biologist Dr. Sepp Margraf (+26.01.2012, Xishuangbanna, China), Natural Product Chemist Prof. Dr. Hermann Schildknecht (+01.07.1996, Heidelberg, Germany), Taxonomist and Field Entomologist Dr. Michel Brancucci (+18.10.2012, Basel, Switzerland), and Field Entomologist Hans Schaeflein (+17.05.1994, Neutraubling, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Dettner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dettner, K. (2014). Chemical Ecology and Biochemistry of Dytiscidae. In: Yee, D. (eds) Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9109-0_6

Download citation

Publish with us

Policies and ethics