Skip to main content

The Regulation of Osmotic Potential in Trees

  • Chapter
  • First Online:
Trees in a Changing Environment

Part of the book series: Plant Ecophysiology ((KLEC,volume 9))

Abstract

The availability of water and the ability of plants to acquire it influence productivity among many ecosystems. For all plants, both terrestrial and marine, the modification of internal osmotic potential (ψπ) is a commonly observed response to changes in water availability. This chapter highlights that modification of ψπ and its effects on plant water potential (ψ) should be considered with regard to physiological relevance, particularly when discussing the physiology of trees. A limited range of solutes are suitable as cellular osmotica and we highlight the physiochemical properties that help to maintain physiological function at low ψ. Overall, differences in the capacity to regulate ψπ are among many functional adaptations that enable growth and productivity of trees across a wide range of environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams MD, Knapp AK (1986) Seasonal water relations of 3 gallery forest hardwood species in northeast Kansas. For Sci 32:687–696

    Google Scholar 

  • Abrams MD (1988a) Sources of variation in osmotic potentials with special reference to North-American tree species. For Sci 34:1030–1046

    Google Scholar 

  • Abrams MD (1988b) Comparative water relations of 3 successional hardwood species in central Wisconsin. Tree Physiol 4:263–273

    Article  PubMed  Google Scholar 

  • Abrams MD (1990) Adaptations and responses to drought in Quercus species of North-America. Tree Phys 7:227–238

    Article  Google Scholar 

  • Andersen HD, Wang CH, Arleth L, Peters GH, Westh P (2011) Reconciliation of opposing views on membrane-sugar interactions. Proc Natl Acad Sci 108:1874–1878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bahari ZA, Pallardy SG, Parker WC (1985) Photosynthesis, water relations, and drought adaptation in 6 woody species of Oak-Hickory forests in central Missouri. For Sci 31:557–569

    Google Scholar 

  • Bell DT, Williams JE (1997) Eucalypt ecophysiology. In: Williams J, Woirnarski J (eds) Eucalypt ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bieleski RL (1994) Pinitol is a major carbohydrate in leaves of some coastal plants indigenous to New-Zealand. New Zeal J Bot 32:73–78

    Article  Google Scholar 

  • Bieleski RL, Briggs BG (2005) Taxonomic patterns in the distribution of polyols within the Proteaceae. Aust J Bot 53(2):05–217

    Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78:237–260

    Article  CAS  Google Scholar 

  • Cameron IL, Kanal KM, Keener CR, Fullerton GD (1997) A mechanistic view of the non-ideal osmotic and motional behavior of intracellular water. Cell Biol Int 21:99–113

    Article  CAS  PubMed  Google Scholar 

  • Cernusak LA, Arthur DJ, Pate JS, Farquhar GD (2003) Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globulus. Plant Physiol 13:1544–1554

    Article  Google Scholar 

  • Chen DM, Keiper FJ, De Filippis LF (1998) Physiological changes accompanying the induction of salt tolerance in Eucalyptus microcorys shoots in tissue culture. J Plant Physiol 152:555–563

    Article  CAS  Google Scholar 

  • Clayton-Greene KA (1983) The tissue water relationships of Callitris columellaris, Eucalyptus melliodora and Eucalyptus microcarpa investigated using the pressure-volume technique. Oecologia 57:368–373

    Article  Google Scholar 

  • Correia MJ, Torres F, Pereira JS (1989) Water and nutrient supply regimes and the water relations of juvenile leaves of Eucalyptus globulus. Tree Physiol 5:459–471

    Article  PubMed  Google Scholar 

  • Escobar-Gutierrez AJ, Zipperlin B, Carbonne F, Moing A, Gaudillere JP (1998) Photosynthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. Aust J Plant Physiol 25:197–205

    Article  CAS  Google Scholar 

  • Fan SH, Blake TJ, Blumwald E (1994) The relative contribution of elastic and osmotic adjustments to turgor maintenance of woody species. Physiol Plant 90:408–413

    Article  Google Scholar 

  • Franco OL, Melo FR (2000) Osmoprotectants – a plant strategy in response to osmotic stress. Russ J Plant Physiol 47:137–144

    CAS  Google Scholar 

  • Gebre GM, Tschaplinski TJ, Shirshac TL (1998) Water relations of several hardwood species in response to throughfall manipulation in an upland oak forest during a wet year. Tree Phys 18:299–305

    Article  Google Scholar 

  • Grieve CM, Shannon MC (1999) Ion accumulation and distribution in shoot components of salt- stressed Eucalyptus clones. J Am Soc Hortic Sci 124:559–563

    CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081

    Article  CAS  Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Mono 1:1–17

    Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334

    Article  Google Scholar 

  • Ladiges PY (1975) Some aspects of tissue water relations in three populations of Eucalyptus viminalis Labill. New Phytol 75:53–62

    Article  Google Scholar 

  • Larher FR, Lugan R, Gagneul D, Guyot S, Monnier C, Lespinasse Y, Bouchereau A (2009) A reassessment of the prevalent organic solutes constitutively accumulated and potentially involved in osmotic adjustment in pear leaves. Environ Exp Bot 66:230–241

    Article  CAS  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90

    Article  PubMed  Google Scholar 

  • Lemcoff JH, Guarnaschelli AB, Garau AM, Basciauli ME, Ghersa CM (1994) Osmotic adjustment and its use as a selection criterion in Eucalyptus seedlings. Can J Forest Res 24:2404–2408

    Article  Google Scholar 

  • Lenz TI, Wright IJ, Westoby M (2006) Interrelations among pressure-volume curve traits across species and water availability gradients. Physiol Plant 127:423–433

    Article  CAS  Google Scholar 

  • Li CY (1998) Some aspects of leaf water relations in four provenances of Eucalyptus microtheca seedlings. For Ecol Manag 111:303–308

    Article  Google Scholar 

  • Liu WH, Fairbairn DJ, Reid RJ, Schachtman DP (2001) Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant Physiol 127:283–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez EM, van der Moezel PG, Pearcepinto GVN, Bell DT (1991) Screening for salt and waterlogging tolerance in Eucalyptus and Melaleuca species. For Ecol Manage 40:27–37

    Article  Google Scholar 

  • Martinez EM, Cancela JJ, Cuesta TS, Neira XX (2011) Review. Use of psychrometers in field measurements of plant material: accuracy and handling difficulties. Span J Agric Res 9:313–328

    Article  Google Scholar 

  • Merchant A, Arndt SK, Callister AN, Adams MA (2007a) Contrasting physiological responses of six Eucalyptus species to water deficit. Ann Bot 100:1507–1515

    Article  PubMed Central  PubMed  Google Scholar 

  • Merchant A, Ladiges PY, Adams MA (2007b) Quercitol links the physiology, taxonomy and evolution of 279 Eucalypt species. Glob Ecol Biogeog 16:810–819

    Article  Google Scholar 

  • Merchant A, Arndt SK, Callister A, Adams MA (2009) Quercitol plays a key role in stress tolerance of Eucalyptus leptophylla (F. Muell) in naturally occurring saline conditions. Environ Exp Bot 65:296–303

    Article  CAS  Google Scholar 

  • Merchant A, Tausz M, Keitel C, Adams MA (2010a) Relations of sugar composition and δ13C in phloem sap to growth and physiological performance of Eucalyptus globulus (Labill). Plant Cell Environ 33:1361–1368

    CAS  PubMed  Google Scholar 

  • Merchant A, Peuke AD, Keitel C, Macfarlane C, Warren CR, Adams MA (2010b) Phloem sap and leaf δ13C, carbohydrates and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment. J Exp Bot 61:1785–1793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moing A, Carbonne F, Zipperlin B, Svanella L, Gaudillere JP (1997) Phloem loading in peach: symplastic or apoplastic? Physiol Plant 101:489–496

    Article  CAS  Google Scholar 

  • Morabito D, Mills D, Prat D, Dizengremel P (1994) Response of clones of Eucalyptus microtheca to NaCl in-vitro. Tree Physiol 14:201–210

    Article  CAS  PubMed  Google Scholar 

  • Morabito D, Jolivet Y, Prat D, Dizengremel P (1996) Differences in the physiological responses of two clones of Eucalyptus microtheca selected for their salt tolerance. Plant Sci 114:129–139

    Article  CAS  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35:299–319

    Article  Google Scholar 

  • Myers BA, Duff GA, Eamus D, Fordyce IR, O’grady A, Williams RJ (1997) Seasonal variation in water relations of trees of differing leaf phenology in a wet-dry tropical savanna near Darwin, northern Australia. Aust J Bot 45:225–240

    Article  Google Scholar 

  • Myers BA, Neales TF (1986) Osmotic adjustment, induced by drought, in seedlings of three Eucalyptus species. Aust J Plant Physiol 13:597–603

    Article  Google Scholar 

  • Nguyen A, Lamant A (1988) Pinitol and myo-inositol accumulation in water stressed seedlings of maritime pine. Phytochemistry 27:3423–3427

    Article  CAS  Google Scholar 

  • Niknam SR, McComb J (2000) Salt tolerance screening of selected Australian woody species – a review. For Ecol Manag 139:1–19

    Article  Google Scholar 

  • Orthen B, Popp M (2000) Cyclitols as cryoprotectants for spinach and chickpea thylakoids. Environ Exp Bot 44:125–132

    Article  CAS  PubMed  Google Scholar 

  • Orthen B, Popp M, Smirnoff N (1994) Hydroxyl radical scavenging properties of cyclitols. P Roy Soc Edinb B 102:269–272

    Google Scholar 

  • Orthen B, Popp M, Barz W (2000) Cyclitol accumulation in suspended cells and intact plants of Cicer arietinum L. J Plant Physiol 156:40–45

    Article  CAS  Google Scholar 

  • Palacio S, Maestro M, Montserrat-Marti G (2007) Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environ Exp Bot 59:34–42

    Article  CAS  Google Scholar 

  • Palfi G, Koves E, Bito M, Sebestyen R (1974) Role of amino-acids during water-stress in species accumulating proline. Phyton Int J Exp Bot 32:121–127

    CAS  Google Scholar 

  • Parker WC, Pallardy SG (1987) The influence of resaturation method and tissue-type on pressure-volume analysis of Quercus-Alba L seedlings. J Exp Bot 38:535–549

    Article  Google Scholar 

  • Pate J, Shedley E, Arthur D, Adams M (1998) Spatial and temporal variations in phloem sap composition of plantation-grown Eucalyptus globulus. Oecologia 117:312–322

    Article  Google Scholar 

  • Paul MJ, Cockburn W (1989) Pinitol, a compatible solute in Mesembryanthemum crystallinum L? J Exp Bot 40:1093–1098

    Article  CAS  Google Scholar 

  • Pfundner G (1993) Vergleichende Untersuchungen zum Inhaltsstoffmuster neuweltlicher Trocken- und Salzpflanzen (Comparison of Metabolite patterns of plants from arid or saline habitats of the new world). Dissertation, University of Vienna, Vienna

    Google Scholar 

  • Pita P, Pardos JA (2001) Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit. Tree Physiol 21:599–607

    Article  CAS  PubMed  Google Scholar 

  • Popp M, Smirnoff N (1995) Polyol accumulation and metabolism during water deficit. In: Smirnoff N (ed) Environmental and metabolism flexibility and acclimation – environmental plant biology. Bios Scientific, Oxford

    Google Scholar 

  • Popp M, Lied W, Bierbaum U, Gross M, Grosse-Schulte T, Hams S, Oldenettel J, Schuler S, Wiese J (1997) Cyclitols – stable osmotica in trees. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees – contributions to modern tree physiology. Backhuys Publisher, The Hague, pp 257–270

    Google Scholar 

  • Prat D, Fathi-Ettai RA (1990) Variation in organic and mineral components in young Eucalyptus seedlings under saline stress. Physiol Plant 79:479–486

    Article  CAS  Google Scholar 

  • Rajam MV, Dagar S, Waie B, Yadav JS, Kumav PA, Shoeb F, Kumna R (1998) Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance in higher plants. J Biosci 23:473–482

    Article  CAS  Google Scholar 

  • Roberts SW, Knoerr KR (1977) Components of water potential estimated from xylem pressure measurements in 5 tree species. Oecologia 28:191–202

    Article  Google Scholar 

  • Schulte PJ, Hinckley TM (1985) A comparison of pressure volume curve data analysis techniques. J Exp Bot 36:1590–1602

    Article  Google Scholar 

  • Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ 30:1126–1149

    Article  CAS  PubMed  Google Scholar 

  • Stoneman GL, Turner NC, Dell B (1994) Leaf growth, photosynthesis and tissue water relations of greenhouse-grown Eucalyptus-marginata seedlings in response to water deficits. Tree Physiol 14:633–646

    Article  PubMed  Google Scholar 

  • Streeter JG, Lohnes DG, Fioritto RJ (2001) Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell Environ 24:429–438

    Article  CAS  Google Scholar 

  • Sun D, Dickinson G (1993) Responses to salt stress of 16 Eucalyptus species, Grevillea robusta, Lophostemon confertus and Pinus caribaea var hondurensis. For Ecol Manag 60:1–14

    Article  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology. Sinauer Associates, Sunderland

    Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432

    Article  Google Scholar 

  • Tomos D (2000) The plant cell pressure probe. Biotechnol Lett 22:437–442

    Article  CAS  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366

    Article  Google Scholar 

  • Turner NC (1988) Measurement of plant water status by the pressure chamber technique. Irrig Sci 9:289–308

    Article  Google Scholar 

  • Turner NC, Jones MM (1980) Turgor maintenance by osmotic adjustment. A review and evaluation. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley-InterScience, New York

    Google Scholar 

  • van der Moezel PG, Bell DT (1987) Comparative seedling salt tolerance of several Eucalyptus and Melaleuca species from western Australia. Aust For Res 17:151–158

    Google Scholar 

  • van der Moezel PG, Pearcepinto GVN, Bell DT (1991) Screening for salt and waterlogging tolerance in Eucalyptus and Melaleuca species. For Ecol Manage 40:27–37

    Article  Google Scholar 

  • White DA, Turner NC, Galbraith JH (2000) Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiol 20:1157–1165

    Article  PubMed  Google Scholar 

  • Wurth MKR, Pelaez-Riedl S, Wright SJ, Körner C (2005) Non-structural carbohydrate pools in a tropical forest. Oecologia 143:11–24

    Article  PubMed  Google Scholar 

  • Zohar Y, Schiller G (1998) Growth and water use by selected seed sources of Eucalyptus under high water table and saline conditions. Agric Ecosyst Environ 69:265–277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Merchant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Merchant, A. (2014). The Regulation of Osmotic Potential in Trees. In: Tausz, M., Grulke, N. (eds) Trees in a Changing Environment. Plant Ecophysiology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9100-7_5

Download citation

Publish with us

Policies and ethics