Advertisement

Cortical Regions Involved in the Generation of Musical Structures During Improvisation in Pianists

Chapter
  • 6.4k Downloads

Abstract

Studies on simple pseudorandom motor and cognitive tasks have shown that the dorsolateral prefrontal cortex and rostral premotor areas are involved in free response selection. We used functional magnetic resonance imaging to investigate whether these brain regions are also involved in free generation of responses in a more complex creative behavior: musical improvisation. Eleven professional pianists participated in the study. In one condition, Improvise, the pianist improvised on the basis of a visually displayed melody. In the control condition, Reproduce, the participant reproduced his previous improvisation from memory. Participants were able to reproduce their improvisations with a high level of accuracy, and the contrast Improvise versus Reproduce was thus essentially matched in terms.

Keywords

Musical Structure Rostral Premotor Areas Dorsolateral Prefrontal Cortex (DLPFC) Musical Improvisation Creative Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Lea Foreman, Hans Forssberg, Guy Madison, and Jeanne Nakamura for comments on the manuscript. This work was funded by the Swedish Research Council; the Freemasons in Stockholm Foundation for Children’s Welfare, Sweden the Medici II symposia on positive psychology; the Templeton Foundation; and Linnea och Josef Carlssons Stiftelse, Sweden. The present address of S. L. B. is Wellcome Department of Imaging Neuroscience, Institute of Neurology, London, UK.

Reprint requests should be sent to Dr. Fredrik Ullén, Stockholm Brain Institute, Neuropediatric Research Unit Q2; 07, Department of Women and Child Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden, or via e-mail: Fredrik.Ullen@kl.se.

References

  1. Abdullaev, Y., & Posner, M. I. (1997). Time course of activating brain areas in generating verbal associations. Psychological Science, 8, 56–59.CrossRefGoogle Scholar
  2. Andersen, R. Α., Snyder, L. H., Bradley, D. C., & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience, 20, 303–330.PubMedCrossRefGoogle Scholar
  3. Ashburner, J., & Friston, K. J. (1997). Multimodal image coregistration and partitioning: A unified framework. Neuroimage, 6, 209–217.PubMedCrossRefGoogle Scholar
  4. Baddeley, A. (1986). Working memory. Oxford: Clarendon Press.Google Scholar
  5. Barbas, H., & Pandya, D. N. (1987). Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. Journal of Comparative Neurology, 256, 211–228.PubMedCrossRefGoogle Scholar
  6. Bates, J. P., & Goldman·Rakic, P. S. (1993). Prefrontal connections of medial motor areas in the rhesus monkey. Journal of Comparative Neurology, 336, 211–228.PubMedCrossRefGoogle Scholar
  7. Bengtsson, S., Ehrsson, H. H., Forssberg, H., & Ullén, F. (2004). Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences. European Journal of Neuroscience, 19, 2591–2602.PubMedCrossRefGoogle Scholar
  8. Bengtsson, S. L., Ehrsson, H. H., Forssberg, H., & Ullén, F. (2005). Effector-independent voluntary timing: Behavioural and neuroimaging evidence. European Journal of Neuroscience, 22, 3255–3265.PubMedCrossRefGoogle Scholar
  9. Bengtsson, S. L., & Ullén, F. (2006). Different neural correlates for melody and rhythm processing during piano performance from musical scores. Neuroimage, 30, 272–284.PubMedCrossRefGoogle Scholar
  10. Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67, 380–400.PubMedCrossRefGoogle Scholar
  11. Carlsson, I., Wendt, P. E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia, 38, 873–885.PubMedCrossRefGoogle Scholar
  12. Csikszentmihalyi, M. (1997). Creativity: Flow and the psychology of discovery and invention. New York: Perennial.Google Scholar
  13. Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50, 873–880.PubMedCrossRefGoogle Scholar
  14. Deiber, M. P., Passingham, R. E., Colebatch, J. G., Friston, K. J., Nixon, P. D., & Frackowlak, R. S. J. (1991). Cortical areas and the selection of movement: A study with positron emission tomography. Experimental Brain Research, 84, 393–402.Google Scholar
  15. Desmond, J. E., Gabrieli, J. D. E., & Glover, G. H. (1998). Dissociation of frontal and cerebellar activity in a cognitive task: Evidence for a distinction between selection and search. Neuroimage, 7, 368–376.PubMedCrossRefGoogle Scholar
  16. Duvernoy, H. M. (2000). The human brain: Surface, blood supply and three-dimensional sectional anatomy. Wien: Springer.Google Scholar
  17. Eyscnck, H. (1995). Genius. The natural history of creativity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Frith, C. D. (2000). The role of dorsolateral prefrontal cortex in the selection of action. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance (Vol. 18, pp. 429–565). Cambridge: MIT Press.Google Scholar
  19. Frith, C. D., Friston, K. J., Liddle, P. F., & Frackowiak, R. S. J. (1991). Willed action and the prefrontal cortex in man: A study with PET. Proceedings of the Royal Society of London, Series B, 2.14, 241–246.Google Scholar
  20. Fuster, J. (2001). The prefrontal cortex: An update time is of the essence. Neuron, 30, 319–333.PubMedCrossRefGoogle Scholar
  21. Gaab, N., Gaser, C., Zaehic, T., Jancke, L., & Schlaug, G. (2003). Functional anatomy of pitch memory: An fMRI study with sparse temporal sampling. Neuroimage, 19, 1417–1426.Google Scholar
  22. Genovese, C. R., Lazar, Ν. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15, 870–878.PubMedCrossRefGoogle Scholar
  23. Grafton, S. T., Fagg, Λ, I. I., & Arbib, M. A. (1998). Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. J Neurophys, 70, 1092–1097.Google Scholar
  24. Griffiths, T. D., Buchel, C., Frackowiak, R. S., & Patterson, R. D. (1998). Analysis of temporal structure in sound by the human brain. Nature Neuroscience, 1, 422–427.Google Scholar
  25. Hickok, G., Buchsbaum, B., Humphries, C., & Muftuler, T. (2003). Auditory-motor interaction revealed by fMRI: Speech, music, and working memory in area Spt. Journal of Cognitive Neuroscience, 15, 673–682.PubMedCrossRefGoogle Scholar
  26. Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends Cogn Sci, 4, 131–138.PubMedCrossRefGoogle Scholar
  27. Howard-Jones, P.A., Blakemore, S. J., Samuel, Ε. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Cognitive Brain Research, 25, 240–250.Google Scholar
  28. Jahamhahi, M., & Dirnberger, G. (1999). The left dorsolateral prefrontal cortex and random generation of responses: Studies with transcranial magnetic stimulation. Neuropsychologia, 37, 181–190.CrossRefGoogle Scholar
  29. Jahanshahi, M., Dirnberger, G., Fuller, R., & Frith, C. D. (2000). The role of the dorsolateral prefrontal cortex in random number generation: A study with positron emission tomography. Neuroimage, 12, 713–725.Google Scholar
  30. Jahanshahi, M., & Frith, C. D. (1998). Willed action and its impairments. Cognitive Neuropsychology, 15, 483–533.Google Scholar
  31. Jahanshahi, M., Jenkins, I. H., Brown, R. G., Marsden, C. D., Brooks, D. J., & Passingham, R. E. (1995a). Self-initiated versus externally-triggered movements: Effects of stimulus predictability assessed with positron emission tomography. Journal of Psychophysiology, 9, 177–178.Google Scholar
  32. Jahanshahi, M., Jenkins, I, H., Brown, R. G., Marsden, C. D., Passingham, R, E., & Brooks, D. J., (1995b). Self-initiated versus externally triggered movements: I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain, 118, 913–933.Google Scholar
  33. Jahanshahi, M., Profice, P., Brown, R. G., Ridding, M. C., Dirnberger, G., & Rothwell, J. C. (1998). The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain, 121, 1533–1544.PubMedCrossRefGoogle Scholar
  34. Jäncke, L., Loose, R., Lutz, Κ., Specht, Κ., & Shah, Ν. J. (2000). Conical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cognitive Brain Research, 10, 51–66.PubMedCrossRefGoogle Scholar
  35. Johansen-Berg, H., Behrens, T. E., Robson, M. D., Drobnjak, I., Rushworth, M. F., Brady, J. M., et al. (2004). Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proceedings of the National Academy of Sciences USA, 101, 13335–13340.Google Scholar
  36. Jueptner, M., Stephan, Κ. M., Frith, C. D., Brooks, D. J., Frackowiak, R. S., & Passingham, R. E. (1997). Anatomy of motor learning: I. Frontal cortex and attention to action. Journal of Neurophysiology, 77, 1313–1324.PubMedGoogle Scholar
  37. Knuth, D. E. (1981). Supernatural numbers. In D. A. Klarner (Ed.), The mathematical gardener (pp. 310–325). Belmont: Wadsworth.CrossRefGoogle Scholar
  38. Larsson, J., Gulyás, B., & Roland, P. E. (1996). Cortical representation of self-paced finger movement. NeuroReport, 7, 463–468.PubMedCrossRefGoogle Scholar
  39. Lau, C, I. I., Rogers, R. D., Ramnani, N., & Passingham, R. E. (2004). Willed action and attention to the selection of action. Neuroimage, 21, 1407–1415.PubMedCrossRefGoogle Scholar
  40. Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, Insertions and reversals. Soviet Physics Doklady, 6, 707–710.Google Scholar
  41. Lewis, P. A., Wing, A. M., Pope, P. A., Praamstra, P., & Mlall, R. C. (2004). Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia, 42, 1301–1312.PubMedCrossRefGoogle Scholar
  42. Lu MT, Preston JΒ, Strick PL (1994) Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J Comp Neurol 341:375–392Google Scholar
  43. Luria, A. R. (1966). Higher cortical functions in man. New York: Basic Books.Google Scholar
  44. Lutz, K., Specht, Κ., Shah, N. J., & Jäncke, L. (2000). Tapping movements according to regular and irregular visual timing signals Investigated with fMRI. NeuroReport, 11, 1301–1306.PubMedCrossRefGoogle Scholar
  45. Macar, F., Lejeune, H., Bonnet, M., Ferrara, Α., Pouthas, V., Vidal, F., et al. (2002). Activation of the supplementary motor area and of attentional networks during temporal processing. Experimental Brain Research, 142, 475–485.PubMedCrossRefGoogle Scholar
  46. Nathaniel-James, D. A., & Frith, C. D. (2002). The role of the dorsolateral prefrontal cortex: Evidence from the effects of contextual constraint in a sentence completion task. Neuroimage, 16, 1094–1102.PubMedCrossRefGoogle Scholar
  47. Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J. -B. (2005). Valid conjunction inference with the minimum statistic. Neuroimage, 25, 653–660.Google Scholar
  48. Ohbayashl, M., Ohki, K., & Miyashita, Y. (2003). Conversion of working memory to motor sequence in the monkey premotor cortex. Science, 301, 233–236.CrossRefGoogle Scholar
  49. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.PubMedCrossRefGoogle Scholar
  50. Palmer, K. (2001). Ornamentation according to C. P. B. Bach and J. J. Quantz. Bloomington, IN: Authorhouse.Google Scholar
  51. Parsons, L. M., Sergent, J., Hodges, D. Α., & Fox, Ρ. T. (2005). The brain basis of piano performance. Neuropsychologia, 43, 199–215.Google Scholar
  52. Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36, 767–776.Google Scholar
  53. Petersen, S, E., Fox, P. T., Posner, M. I., Nintus, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single word processing. Nature, 331, 585–589.Google Scholar
  54. Petrides, M. (1995). Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey. Journal of Neuroscience, 15, 359–375.PubMedGoogle Scholar
  55. Picard, Ν., & Strick, P. I. (2001). Imaging the premotor areas. Current Opinion on Neurobiology, 11, 663–672Google Scholar
  56. Playford, E. D., Jenkins, I. H., Passingham, R. E., Nutt, J., Frackowiak, R. S., & Brooks, D. J. (1992). Impaired mesial frontal and putamen activation in Parkinson’s disease: A positron emission tomography study. Annals of Neurology, 32, 151–161.PubMedCrossRefGoogle Scholar
  57. Pressing, J. (1988). Improvisation: Methods and models. In J. Α. Sloboda (Ed.), Generative processes in music (pp. 129–178). New York: Oxford University Press.Google Scholar
  58. Rowe, J. B., Stephan, Κ. Ε., Friston, Κ., Frackowlak, R. S., & Passingham, R. Ε. (2005). The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour. Cerebral Cortex, 15, 85–95.PubMedCrossRefGoogle Scholar
  59. Schmahmann, J. D., Doyon, J., Toga, A. W., Petrides, M., & Evans, A. C. (2000). MRI atlas of the human cerebellum. San Diego: Academic Press.Google Scholar
  60. Schubotz, R. I., & von Cramon, D. Y. (2001). Interval and ordinal properties of sequences are associated with distinct premotor areas. Cerebral Cortex, 11, 210–222.PubMedCrossRefGoogle Scholar
  61. Seger, C. Α., Desmond, J. E., Glover, G, H., & Gabrieli, J. D. (2000). Functional magnetic resonance Imaging evidence for right-hemisphere Involvement in processing unusual semantic relationships. Neuropsychology, 14, 361–369.Google Scholar
  62. Simonton, D. K. (1999). Origins of genius. Darwinian perspectives on creativity. New York: Oxford University Press.Google Scholar
  63. Sternberg, R. J. (1999). Handbook of creativity. Cambridge: Cambridge University Press.Google Scholar
  64. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. Stuttgart: Thleme.Google Scholar
  65. Wise, S. P., Boussaoud, D., Johnson, P. B., & Caminiti, R. (1997). Premotor and parietal cortex: Corticocortical connectivity and combinatorial computations. Annual Review of Neuroscience, 20, 25–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Karolinska InstitutetStockholmSweden
  2. 2.Claremont Graduate UniversityClaremontUSA

Personalised recommendations