Skip to main content

Image Enhancement for Improving Object Recognition

  • Chapter
  • First Online:
Algorithm & SoC Design for Automotive Vision Systems
  • 2123 Accesses

Abstract

Image enhancement techniques are increasingly needed for improving object recognition in automobile driving. In driving conditions, there are many variables that degrade the quality of the image captured from the camera, such as fog, rain, a sudden change of illumination, or lack of illumination. If the quality of the obtained image is degraded, object recognition (cars, pedestrians, fixed objects, and traffic signals) can be unsatisfactory. To improve the recognition rate of objects, several image enhancement algorithms are proposed and evaluated. In this chapter, general image enhancement techniques are introduced, followed by a discussion of advanced techniques for the driving environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Gonzales, R. Woods, Digital Image Processing, (Prentice Hall, 2010)

    Google Scholar 

  2. R. Crane, Simplified Approach to Image Processing, (Prentice Hall, 1997)

    Google Scholar 

  3. E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting, (Morgan Kauffman, 2005)

    Google Scholar 

  4. S.-D. Chen, R. Ramli, Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 49(4), (2003)

    Google Scholar 

  5. M. Ahmad, D. Sundararajan, A fast algorithm for Two-Dimensional median Filtering. IEEE Trans. Circuits Syst. 34(11), 1364–1374 (1987)

    Google Scholar 

  6. http://blogmolinodeagua.blogspot.kr/

  7. A. Shashua, Y. Gdalyahu, G. Hayun, Pedestrian detection for driving assistance systems: single-frame classification and system level performance. IEEE intelligent vehicles symposium, pp. 1–6 (2004)

    Google Scholar 

  8. K.K. Mohanty, The wavelet transform for local image enhancement. Int. J. Remote Sens. 18(1), 213–219 (1997)

    Article  Google Scholar 

  9. S. Qian, Introduction to Time-Frequency and Wavelet Transforms, (Prentice Hall, 2002)

    Google Scholar 

  10. C. Sidney Burrus, R. A. Gopinath, H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer, (Prentice Hall, 1998)

    Google Scholar 

  11. S. Gopinathan, P. Thangavel, A non linear technique for image enhancement based on discrete wavelet transform. Eur. J. Sci. Res. 79(3), 328–336 (2012)

    Google Scholar 

  12. http://en.wikipedia.org/wiki/Dynamic_range

  13. T. G. Stockham. Image processing in the context of a visual model. Proceedings of the IEEE 60:828–842

    Google Scholar 

  14. F. Drago et al., Adaptive Logarithmic Mapping for Displaying High Contrast Scenes. Computer Graphics Forum, vol. 22, no. 3 (Blackwell Publishing, Inc 2003)

    Google Scholar 

  15. K. Chiu, M. Herf, P. Shirley, S. Swamy, C. Wang, and K. Zimmerman., Spatially nonuniform scaling functions for high contrast images, in Proceedings of Graphics Interface ’93, Toronto, 245–253 May 1993

    Google Scholar 

  16. Rahman, Zia-ur, D. J. Jobson, G. A. Woodell., Multiscale retinex for color rendition and dynamic range compression. in SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, (1996)

    Google Scholar 

  17. M. D. Fairchild and G. M. Johnson., Meet iCAM : An Image Color Appearance Model, in IS&T/SID 10th Color Imaging Conference, pp. 33–38, Scottsdale : IS&T, (2002)

    Google Scholar 

  18. S. N. Pattanaik, J. A. Ferwerda, M. D. Fairchild, and D. P. Greenberg., A Multiscale Model of Adaptation and Spatial Vision for Realistic Image Display, in SIGGRAPH 98 Conference Proceedings (ACM SIGGRAPH), 287–298 July 1998

    Google Scholar 

  19. A. V. Oppenheim, R. Schafer, and T. Stockham., Nonlinear filtering of multiplied and convolved signals. Proceedings of the IEEE 56(8), 1265–1291 (1968)

    Google Scholar 

  20. Choudhury, Prasun, J. Tumblin. The trilateral filter for high contrast images and meshes. (ACM SIGGRAPH 2005 Courses. ACM), (2005)

    Google Scholar 

  21. B.K.P. Horn, Determining lightness from an image. CVGIP 3(4), 277–299 (1974)

    MathSciNet  Google Scholar 

  22. Fattal, Raanan, D. Lischinski, M. Werman. Gradient domain high dynamic range compression. ACM Trans. Graphics (TOG) 21(3), 2002

    Google Scholar 

  23. Adelson, H. Edward., et al., Pyramid methods in image processing. RCA engineer 29.6, 33–41 (1984)

    Google Scholar 

  24. L. Vytla, F. Hassan, J. E. Carletta, A real-time implementation of gradient domain high dynamic range compression using a local Poisson solver. J. Real-Time Image Proc. 8(2), 153–167 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeseok Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kim, J. (2014). Image Enhancement for Improving Object Recognition. In: Kim, J., Shin, H. (eds) Algorithm & SoC Design for Automotive Vision Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9075-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9075-8_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9074-1

  • Online ISBN: 978-94-017-9075-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics