Skip to main content

Evolution of Retinoic Acid Receptors and Retinoic Acid Signaling

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 70))

Abstract

Retinoic acid (RA) is a vitamin A-derived morphogen controlling important developmental processes in vertebrates, and more generally in chordates, including axial patterning and tissue formation and differentiation. In the embryo, endogenous RA levels are controlled by RA synthesizing and degrading enzymes and the RA signal is transduced by two retinoid receptors: the retinoic acid receptor (RAR) and the retinoid X receptor (RXR). Both RAR and RXR are members of the nuclear receptor superfamily of ligand-activated transcription factors and mainly act as heterodimers to activate the transcription of target genes in the presence of their ligand, all-trans RA. This signaling pathway was long thought to be a chordate innovation, however, recent findings of gene homologs involved in RA signaling in the genomes of a wide variety of non-chordate animals, including ambulacrarians (sea urchins and acorn worms) and lophotrochozoans (annelids and mollusks), challenged this traditional view and suggested that the RA signaling pathway might have a more ancient evolutionary origin than previously thought. In this chapter, we discuss the evolutionary history of the RA signaling pathway, and more particularly of the RARs, which might have experienced independent gene losses and duplications in different animal lineages. In sum, the available data reveal novel insights into the origin of the RA signaling pathway as well as into the evolutionary history of the RARs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADH:

Alcohol dehydrogenase

AF:

Activation function

BCO:

β-carotene 15,15′-monooxygenase

BMP-1:

Bone morphogenetic protein-1

CRABP:

Cellular retinoic acid binding protein

CRBP:

Cellular retinol binding protein

CYP:

Cytochrome P450

CYP26:

Cytochrome P450 subfamily 26

DBD:

DNA binding domain

DR:

Direct repeat

FRET:

Fluorescence resonance energy transfer

HPLC:

High performance liquid chromatography

LBD:

Ligand binding domain

RA:

Retinoic acid

RALDH:

Retinal dehydrogenase

RAR:

Retinoic acid receptor

RARE:

Retinoic acid response element

RDH10:

Retinol dehydrogenase 10

RXR:

Retinoid X receptor

SDR:

Short-chain dehydrogenase/reductase

USP:

Ultraspiracle

References

  1. Albalat R, Cañestro C (2009) Identification of Aldh1a, Cyp26 and rar orthologs in protostomes pushes back the retinoic acid genetic machinery in evolutionary time to the bilaterian ancestor. Chem-Biol Interact 178:188–196

    CAS  PubMed  Google Scholar 

  2. Balmer JE, Blomhoff R (2005) A robust characterization of retinoic acid response elements based on a comparison of sites in three species. J Steroid Biochem Mol Biol 96:347–354

    CAS  PubMed  Google Scholar 

  3. Baek SH, Rosenfeld MG (2004) Nuclear receptor coregulators: their modification codes and regulatory mechanism by translocation. Biochem Biophys Res Co 319:707–714

    CAS  Google Scholar 

  4. Bertrand S, Brunet FG, Escriva H, Parmentier G, Laudet V, Robinson-Rechavi M (2004) Evolutionary genomics of nuclear receptors: from twenty-five ancestral genes to derived endocrine systems. Mol Biol Evol 21:1923–1937

    CAS  PubMed  Google Scholar 

  5. Biesalski HK, Doepner G, Tzimas G, Gamulin V, Schroder HC, Batel R, Nau H, Muller WE (1992) Modulation of myb gene expression in sponges by retinoic acid. Oncogene 7:1765–1774

    CAS  PubMed  Google Scholar 

  6. Billas IM, Moulinier L, Rochel N, Moras D (2001) Crystal structure of the ligand-binding domain of the ultraspiracle protein USP, the ortholog of retinoid X receptors in insects. J Biol Chem 276:7465–7474

    CAS  PubMed  Google Scholar 

  7. Blum N, Begemann G (2012) Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration. Development 139:107–116

    CAS  PubMed  Google Scholar 

  8. Boleda MD, Saubi N, Farrés J, Parés X (1993) Physiological substrates for rat alcohol dehydrogenase classes: aldehydes of lipid peroxidation, omega-hydroxyfatty acids, and retinoids. Arch Biochem Biophys 307:85–90

    CAS  PubMed  Google Scholar 

  9. Bouton D, Escriva H, de Mendonça RL, Glineur C, Bertin B, Noël C, Robinson-Rechavi M, de Groot A, Cornette J, Laudet V, Pierce RJ (2005) A conserved retinoid X receptor (RXR) from the mollusk Biomphalaria glabrata transactivates transcription in the presence of retinoids. J Mol Endocrinol 34:567–582

    CAS  PubMed  Google Scholar 

  10. Bruck N, Vitoux D, Ferry C, Duong V, Bauer A, de The H, Rochette-Egly C (2009) A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARα to target promoters. EMBO J 28:34–47

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Calleja C, Messaddeq N, Chapellier B, Yang H, Krezel W, Li M, Metzger D, Mascrez B, Ohta K, Kagechika H, Endo Y, Mark M, Ghyselinck NB, Chambon P (2006) Genetic and pharmacological evidence that a retinoic acid cannot be the RXR-activating ligand in mouse epidermis keratinocytes. Genes Dev 20:1525–1538

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Campo-Paysaa F, Marlétaz F, Laudet V, Schubert M (2008) Retinoic acid signaling in development: tissue-specific functions and evolutionary origins. Genesis 46:640–656

    CAS  PubMed  Google Scholar 

  13. Cañestro C, Postlethwait JH, Gonzàlez-Duarte R, Albalat R (2006) Is retinoic acid genetic machinery a chordate innovation? Evol Dev 8:394–406

    PubMed  Google Scholar 

  14. Carvalho JE, Schubert M (2013) Retinoic acid: metabolism, developmental functions and evolution. In: Dakshinamurti K, Dakshinamurti S (eds) Vitamin-binding proteins: their functional consequences. CRC Press/Taylor & Francis Group, Boca Raton, Florida, USA (in press)

    Google Scholar 

  15. Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    CAS  PubMed  Google Scholar 

  16. Chaumot A, da Lage JL, Maestro O, Martin D, Iwema T, Brunet F, Belles X, Laudet V, Bonneton F (2012) Molecular adaptation and resilience of the insect’s nuclear receptor USP. BMC Evol Biol 12(1):199

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Clayton GM, Peak-Chew SY, Evans RM, Schwabe JW (2001) The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proc Natl Acad Sci USA 98:1549–1554

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Corcoran J, Maden M (1999) Nerve growth factor acts via retinoic acid synthesis to stimulate neurite outgrowth. Nat Neurosci 2:307–308

    CAS  PubMed  Google Scholar 

  19. Creton R, Zwaan G, Dohmen R (1993) Specific developmental defects in molluscs after treatment with retinoic acid during gastrulation. Dev Growth Differ 35:357–364

    CAS  Google Scholar 

  20. Dalfó D, Albalat R, Molotkov A, Duester G, Gonzàlez-Duarte R (2002) Retinoic acid synthesis in the prevertebrate amphioxus involves retinol oxidation. Dev Genes Evol 212:388–393

    PubMed  Google Scholar 

  21. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:e314

    PubMed Central  PubMed  Google Scholar 

  22. de Urquiza AM, Liu S, Sjöberg M, Zetterström RH, Griffiths W, Sjövall J, Perlmann T (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144

    PubMed  Google Scholar 

  23. Dmetrichuk JM, Carlone RL, Jones TRB, Vesprini ND, Spencer GE (2008) Detection of endogenous retinoids in the molluscan CNS and characterization of the trophic and tropic actions of 9-cis retinoic acid on isolated neurons. J Neurosci 28:13014–13024

    CAS  PubMed  Google Scholar 

  24. Dmetrichuk JM, Carlone RL, Spencer GE (2006) Retinoic acid induces neurite outgrowth and growth cone turning in invertebrate neurons. Dev Biol 294:39–49

    CAS  PubMed  Google Scholar 

  25. Duester G (2008) Retinoic acid synthesis and signaling during early organogenesis. Cell 134:921–931

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Eick GN, Thornton JW (2011) Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Mol Cell Endocrinol 334:31–38

    CAS  PubMed  Google Scholar 

  27. Escriva H, Bertrand S, Germain P, Robinson-Rechavi M, Umbhauer M, Cartry J, Duffraisse M, Holland L, Gronemeyer H, Laudet V (2006) Neofunctionalization in vertebrates: the example of retinoic acid receptors. PLoS Gene 2(7):e102

    Google Scholar 

  28. Escriva H, Holland ND, Gronemeyer H, Laudet V, Holland LZ (2002) The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest. Development 129:2905–2916

    CAS  PubMed  Google Scholar 

  29. Escriva H, Safi R, Hänni C, Langlois MC, Saumitou-Laprade P, Stehelin D, Capron A, Pierce R, Laudet V (1997) Ligand binding was acquired during evolution of nuclear receptors. PNAS 94:6803–6808

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Fujiwara S (2006) Retinoids and nonvertebrate chordate development. J Neurobiol 66:645–652

    CAS  PubMed  Google Scholar 

  31. Fujiwara S, Kawamura K (2003) Acquisition of retinoic acid signaling pathway and innovation of the chordate body plan. Zool Sci 20:809–818

    CAS  PubMed  Google Scholar 

  32. Germain P, Iyer J, Zechel C, Gronemeyer H (2002) Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature 415:187–192

    CAS  PubMed  Google Scholar 

  33. Gesto M, Castro LF, Reis-Henriques MA, Santos MM (2012) Retinol metabolism in the mollusk Osilinus lineatus indicates an ancient origin for retinyl ester storage capacity. PLoS One 7:e35138

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141

    CAS  PubMed  Google Scholar 

  35. Glover JC, Renaud JS, Rijli FM (2006) Retinoic acid and hindbrain patterning. J Neurobiol 66:705–725

    CAS  PubMed  Google Scholar 

  36. Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3:950–964

    CAS  PubMed  Google Scholar 

  37. Guengerich FP, Cheng Q (2011) Orphans in the human cytochrome P450 superfamily: approaches to discovering functions and relevance in pharmacology. Pharmacol Rev 63:684–699

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Halme A, Cheng M, Hariharan IK (2010) Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr Biol 20:458–463

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C (1992) 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68:397–406

    CAS  PubMed  Google Scholar 

  40. Hisata K, Fujiwara S, Tsuchida Y, Ohashi M, Kawamura K (1998) Expression and function of a retinoic acid receptor in budding ascidians. Dev Genes Evol 208:537–546

    CAS  PubMed  Google Scholar 

  41. Hopkins P (2001) Limb regeneration in the fiddler crab, Uca pugilator: hormonal and growth factor control. Amer Zool 398:389–398

    Google Scholar 

  42. Hopkins PM, Durica DS (1995) Effects of all-trans retinoic acid on regenerating limbs of the fiddler crab. Uca pugilator. J Exp Zool 272:455–463

    CAS  Google Scholar 

  43. Horst RL, Reinhardt TA, Goff JP, Nonnecke BJ, Gambhir VK, Fiorella PD, Napoli JL (1995) Identification of 9-cis,13-cis-retinoic acid as a major circulating retinoid in plasma. Biochemistry 34:1203–1209

    CAS  PubMed  Google Scholar 

  44. Hult EF, Tobe SS, Chang BS (2011) Molecular evolution of ultraspiracle protein (USP/RXR) in insects. PLoS One 6:e23416

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Imsiecke G, Borojevic R, Custudio M, Müller WEG (1994) Retinoic acid acts as a morphogen in freshwater sponges. Invertebr Reprod Dev 26:89–98

    CAS  Google Scholar 

  46. Iwema T, Billas IM, Beck Y, Bonneton F, Nierengarten H, Chaumot A, Richards G, Laudet V, Moras D (2007) Structural and functional characterization of a novel type of ligand-independent RXR-USP receptor. EMBO J 26:3770–3782

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Kane MA (2012) Analysis, occurrence, and function of 9-cis-retinoic acid. Biochim Biophys Acta 1821:10–20

    CAS  PubMed  Google Scholar 

  48. Kane MA, Chen N, Sparks S, Napoli JL (2005) Quantification of endogenous retinoic acid in limited biological samples by LC/MS/MS. Biochem J 388:363–369

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kane MA, Folias AE, Pingitore A, Perri M, Obrochta KM, Krois CR, Cione E, Ryu JY, Napoli JL (2010) Identification of 9-cis-retinoic acid as a pancreas-specific autacoid that attenuates glucose-stimulated insulin secretion. PNAS 107:21884–21889

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Kane MA, Folias A, Napoli J (2008) HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal Biochem 378:71–79

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Kastner P, Leid M, Chambon P (1994) The role of nuclear retinoic acid receptors in the regulation of gene expression. Vitamin A in health and disease. Marcel Dekker, New York, pp 189–238

    Google Scholar 

  52. Kawamura K, Hara K, Fujiwara S (1993) Developmental role of endogenous retinoids in the determination of morphallactic field in budding tunicates. Development 117:835–845

    CAS  Google Scholar 

  53. Keay J, Thornton JW (2009) Hormone-activated estrogen receptors in annelid invertebrates: implications for evolution and endocrine disruption. Endocrinology 150:1731–1738

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Kim CI, Leo MA, Lieber CS (1992) Retinol forms retinoic acid via retinal. Arch Biochem Biophys 294:388–393

    CAS  PubMed  Google Scholar 

  55. Kostrouch Z, Kostrouchova M, Love W, Jannini E, Piatigorsky J, Rall JE (1998) Retinoic acid X receptor in the diploblast, Tripedalia cystophora. PNAS 95:13442–13447

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Kuno S, Kawamoto M, Okuyama M, Yasumasu I (1999) Outgrowth of pseudopodial cables induced by all-trans retinoic acid in micro- mere-derived cells isolated from sea urchin embryos. Dev Growth Differ 41:193–199

    CAS  PubMed  Google Scholar 

  57. Kuraku S (2011) Hox gene clusters of early vertebrates: do they serve as reliable markers for genome evolution? Genomics Proteomics Bioinform 9:97–103

    CAS  Google Scholar 

  58. Lalevée S, Anno YN, Chatagnon A, Samarut E, Poch O, Laudet V, Benoit G, Lecompte O, Rochette-Egly C (2011) Genome-wide in silico identification of new conserved and functional retinoic acid receptor response elements (direct repeats separated by 5 bp). J Biol Chem 286:33322–33334

    PubMed Central  PubMed  Google Scholar 

  59. Laudet V, Gronemeyer H (2002) The nuclear receptors factsbook. Academic Press, London

    Google Scholar 

  60. Lemotte PK, Keidel S, Apfel CM (1996) Phytanic acid is a retinoid X receptor ligand. Eur J Biochem 236:328–333

    CAS  PubMed  Google Scholar 

  61. Marill J, Capron CC, Idres N, Chabot GG (2002) Human cytochrome P450s involved in the metabolism of 9-cis- and 13-cis-retinoic acids. Biochem Pharmacol 63:933–943

    CAS  PubMed  Google Scholar 

  62. Markov GV, Paris M, Bertrand S, Laudet V (2008) The evolution of the ligand/receptor couple: a long road from comparative endocrinology to comparative genomics. Mol Cell Endocrinol 293:5–16

    CAS  PubMed  Google Scholar 

  63. Markov GV, Laudet V (2011) Origin and evolution of the ligand-binding ability of nuclear receptors. Mol Cell Endocrinol 334:21–30

    CAS  PubMed  Google Scholar 

  64. Markov GV, Tavares R, Dauphin-Villemant C, Demeneix BA, Baker ME, Laudet V (2009) Independent elaboration of steroid hormone signaling pathways in metazoans. PNAS 106:11913–11918

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Marlétaz F, Holland L, Laudet V, Schubert M (2006) Retinoic acid signaling and the evolution of chordates. Int J Biol Sci 2:38–47

    PubMed Central  PubMed  Google Scholar 

  66. McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474

    CAS  PubMed  Google Scholar 

  67. Mendoza-Parra MA, Walia M, Sankar M, Gronemeyer H (2011) Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics. Mol Syst Biol 7:538

    PubMed Central  PubMed  Google Scholar 

  68. Mic FA, Molotkov A, Benbrook DM, Duester G (2003) Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. PNAS 100:7135–7140

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Moutier E, Ye T, Choukrallah MA, Urban S, Osz J, Chatagnon A, Delacroix L, Langer D, Rochel N, Moras D, Benoit G, Davidson I (2012) Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology. J Biol Chem 287:26328–26341

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Müller W (1984) Retinoids and pattern formation in a hydroid. J Embryol Exp Morph 271:253–271

    Google Scholar 

  71. Müller WE, Binder M, von Lintig J, Guo YW, Wang X, Kaandorp JA, Wiens M, Schröder HC (2011) Interaction of the retinoic acid signaling pathway with spicule formation in the marine sponge Suberites domuncula through activation of bone morphogenetic protein-1. Biochim Biophys Acta 1810:1178–1194

    PubMed  Google Scholar 

  72. Napoli JL (1999) Retinoic acid: its biosynthesis and metabolism. Prog Nucleic Acid Res Mol Biol 63:139–188

    CAS  PubMed  Google Scholar 

  73. Nishikawa J, Mamiya S, Kanayama T, Nishikawa T, Shiraishi F, Horiguchi T (2004) Involvement of the retinoid X receptor in the development of imposex caused by organotins in gastropods. Environ Sci Technol 38:6271–6276

    CAS  PubMed  Google Scholar 

  74. Nowickyj SM, Chithalen JV, Cameron D, Tyshenko MG, Petkovich M, Wyatt GR, Jones G, Walker VK (2008) Locust retinoid X receptors: 9-Cis-retinoic acid in embryos from a primitive insect. PNAS 105:9540–9545

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Pappas RS, Newcomer ME, Ong DE (1993) Endogenous retinoids in rat epididymal tissue and rat and human spermatozoa. Biol Reprod 48:235–247

    CAS  PubMed  Google Scholar 

  76. Petkovich PM (2001) Retinoic acid metabolism. J Am Acad Dermatol 45:136–142

    Google Scholar 

  77. Philip S, Castro LF, da Fonseca RR, Reis-Henriques MA, Vasconcelos V, Santos MM, Antunes A (2012) Adaptive evolution of the retinoid X receptor in vertebrates. Genomics 99:81–89

    CAS  PubMed  Google Scholar 

  78. Pittlik S, Begemann G (2012) New sources of retinoic acid synthesis revealed by live imaging of an Aldh1a2-GFP reporter fusion protein throughout zebrafish development. Dev Dyn 241:1205–1216

    CAS  PubMed  Google Scholar 

  79. Rhinn M, Dollé P (2012) Retinoic acid signalling during development. Development 139:843–858

    CAS  PubMed  Google Scholar 

  80. Rinkevich Y, Paz G, Rinkevich B, Reshef R (2007) Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol 5:e71

    PubMed Central  PubMed  Google Scholar 

  81. Roberts ES, Vaz AD, Coon MJ (1992) Role of isozymes of rabbit microsomal cytochrome P-450 in the metabolism of retinoic acid, retinol, and retinal. Mol Pharmacol 41:427–433

    CAS  PubMed  Google Scholar 

  82. Robinson-Rechavi M, Boussau B, Laudet V (2004) Phylogenetic dating and characterization of gene duplications in vertebrates: the cartilaginous fish reference. Mol Biol Evol 21:580–586

    CAS  PubMed  Google Scholar 

  83. Romero R, Bueno D (2001) Disto-proximal regional determination and intercalary regeneration in planarians, revealed by retinoic acid induced disruption of regeneration. Int J Dev Biol 45:669–673

    CAS  PubMed  Google Scholar 

  84. Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem 127:27–34

    CAS  Google Scholar 

  85. Samarut E, Amal I, Markov GV, Stote R, Dejaegere A, Laudet V, Rochette-Egly C (2011) Evolution of nuclear retinoic acid receptor alpha (RARα) phosphorylation sites. Serine gain provides fine-tuned regulation. Mol Biol Evol 7:2125–2137

    Google Scholar 

  86. Samarut E, Rochette-Egly C (2011) Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development. Mol Cell Endocrinol 348:348–360

    PubMed  Google Scholar 

  87. Schmidt CK, Brouwer A, Nau H (2003) Chromatographic analysis of endogenous retinoids in tissues and serum. Anal Biochem 315:36–48

    CAS  PubMed  Google Scholar 

  88. Schubert M, Holland ND, Laudet V, Holland LZ (2006) A retinoic acid-hox hierarchy controls both anterior/posterior patterning and neuronal specification in the developing central nervous system of the cephalochordate amphioxus. Dev Biol 296:190–202

    CAS  PubMed  Google Scholar 

  89. Sciarrino S, Matranga V (1995) Effects of retinoic acid and dimethylsulfoxide on the morphogenesis of the sea urchin embryo. Cell Biol Int 19:675–680

    CAS  PubMed  Google Scholar 

  90. Shea C, Hough D, Xiao J, Tzertzinis G, Maina CV (2004) An rxr/usp homolog from the parasitic nematode, Dirofilaria immitis. Gene 324:171–182

    CAS  PubMed  Google Scholar 

  91. Shimozono S, Iimura T, Kitaguchi T, Higashijima SI, Miyawaki A (2013) Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496:363–366

    CAS  PubMed  Google Scholar 

  92. Simões-Costa MS, Azambuja AP, Xavier-Neto J (2008) The search for non-chordate retinoic acid signaling: lessons from chordates. J Exp Zoo B Mol Dev Evol 310:54–72

    Google Scholar 

  93. Storey DM (1982) Vitamin A deficiency and the development of Litomosoides carinii (Nematoda, Filarioidea) in cotton rats. Z Parasitenk 67:309–315

    CAS  PubMed  Google Scholar 

  94. Sturchler D, Wyss F, Hanck A (1981) Retinol, onchocerciasis and Onchocerca volvulus. T Roy Soc Trop Med H 75:617

    CAS  Google Scholar 

  95. Tang GW, Russell RM (1990) 13-cis-retinoic acid is an endogenous compound in human serum. J Lipid Res 31:175–182

    CAS  PubMed  Google Scholar 

  96. Thornton JW, Need E, Crews D (2003) Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301:1714–1717

    CAS  PubMed  Google Scholar 

  97. Urushitani H, Katsu Y, Ohta Y, Shiraishi H, Iguchi T, Horiguchi T (2013) Cloning and characterization of the retinoic acid receptor-like protein in the rock shell, Thais clavigera. Aquat Toxicol 142–143:403–413

    PubMed  Google Scholar 

  98. Viviano CM, Horton C, Maden M, Brockes JP (1995) Synthesis and release of 9-cis retinoic acid by the urodele wound epidermis. Development 121:3753–3762

    CAS  Google Scholar 

  99. White RJ, Schilling TF (2008) How degrading: Cyp26 s in hindbrain development. Dev Dyn 237:2775–2790

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Wiens M (2003) Retinoid X receptor and retinoic acid response in the marine sponge Suberites domuncula. J Exp Biol 206:3261–3271

    CAS  PubMed  Google Scholar 

  101. Wolff KM, Scott AL (1995) Brugia malayi: retinoic acid uptake and localization. Exp Parasitol 80:282–290

    CAS  PubMed  Google Scholar 

  102. Wu BX, Moiseyev G, Chen Y, Rohrer B, Crouch RK, Ma JX (2004) Identification of RDH10, an all-trans retinol dehydrogenase, in retinal Müller cells. IOVS 45:3857–3862

    Google Scholar 

  103. Yang ZN, Davis GJ, Hurley TD, Stone CL, Li TK, Bosron WF (1994) Catalytic efficiency of human alcohol dehydrogenases for retinol oxidation and retinal reduction. Alcohol Clin Exp Res 18:587–591

    CAS  PubMed  Google Scholar 

  104. Yao TP, Segraves WA, Oro AE, McKeown M, Evans RM (1992) Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71:63–72

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by funds from ANR (ANR-09-BLAN-0129-01, ANR-09-BLAN-0262-02, ANR-11-JSV2-002-01) and CNRS to Michael Schubert and Vincent Laudet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Gutierrez-Mazariegos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gutierrez-Mazariegos, J., Schubert, M., Laudet, V. (2014). Evolution of Retinoic Acid Receptors and Retinoic Acid Signaling. In: Asson-Batres, M., Rochette-Egly, C. (eds) The Biochemistry of Retinoic Acid Receptors I: Structure, Activation, and Function at the Molecular Level. Subcellular Biochemistry, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9050-5_4

Download citation

Publish with us

Policies and ethics