Skip to main content

Guaranteeing Spatial Uniformity in Reaction-Diffusion Systems Using Weighted \(L^2\) Norm Contractions

  • Chapter
  • First Online:
A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations

Abstract

We present conditions that guarantee spatial uniformity of the solutions of reaction-diffusion partial differential equations. These equations are of central importance to several diverse application fields concerned with pattern formation. The conditions make use of the Jacobian matrix and Neumann eigenvalues of elliptic operators on the given spatial domain. We present analogous conditions that apply to the solutions of diffusively-coupled networks of ordinary differential equations. We derive numerical tests making use of linear matrix inequalities that are useful in certifying these conditions. We discuss examples relevant to enzymatic cell signaling and biological oscillators. From a systems biology perspective, the paper’s main contributions are unified verifiable relaxed conditions that guarantee spatial uniformity of biological processes.

The authors Zahra Aminzare and Yusef Shafi contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aminzare Z, Sontag ED (2012) Logarithmic Lipschitz norms and diffusion-induced instability. arXiv:12080326v2

  2. Arcak M, Sontag E (2006) Diagonal stability of a class of cyclic systems and its connection with the secant criterion. Automatica 42(9):1531–1537

    Article  Google Scholar 

  3. Arcak M (2011) Certifying spatially uniform behavior in reaction-diffusion pde and compartmental ode systems. Automatica 47(6):1219–1229

    Article  Google Scholar 

  4. Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory, vol 15. Society for Industrial Mathematics

    Google Scholar 

  5. Cantrell RS, Cosner C (2003) Spatial ecology via reaction-diffusion equations. Wiley series in mathematical and computational biology

    Google Scholar 

  6. Elowitz M, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  CAS  PubMed  Google Scholar 

  7. Ge X, Arcak M, Salama K (2010) Nonlinear analysis of ring oscillator and cross-coupled oscillator circuits. Dyn Continuous Discrete Impulsive Syst Ser B: Appl Algorithms 17(6): 959–977

    Google Scholar 

  8. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12(1): 30–39

    Google Scholar 

  9. Gierer A (1981) Generation of biological patterns and form: some physical, mathematical, and logical aspects. Prog Biophys Mol Biol 37(1):1–47

    Article  CAS  PubMed  Google Scholar 

  10. Godsil C, Royle G, Godsil C (2001) Algebraic graph theory, vol 8. Springer, New York

    Google Scholar 

  11. Hale J (1997) Diffusive coupling, dissipation, and synchronization. J Dyn Differ Equ 9(1):1–52

    Article  Google Scholar 

  12. Hartman P (1961) On stability in the large for systems of ordinary differential equations. Can J Math 13:480–492

    Article  Google Scholar 

  13. Henrot A (2006) Extremum problems for eigenvalues of elliptic operators. Birkhauser

    Google Scholar 

  14. Horn RA, Johnson CR (1991) Topics in matrix analysis. Cambridge University Press, Cambridge

    Google Scholar 

  15. Lewis DC (1949) Metric properties of differential equations. Am J Math 71:294–312

    Article  Google Scholar 

  16. Lohmiller W, Slotine JJE (1998) On contraction analysis for non-linear systems. Automatica 34:683–696

    Article  Google Scholar 

  17. Lozinskii SM (1959) Error estimate for numerical integration of ordinary differential equations. I Izv Vtssh Uchebn Zaved Mat 5:222–222

    Google Scholar 

  18. Pavlov A, Pogromvsky A, van de Wouv N, Nijmeijer H (2004) Convergent dynamics, a tribute to Boris Pavlovich Demidovich. Syst Control Lett 52:257–261

    Article  Google Scholar 

  19. Russo G, di Bernardo EDSM (2010) Global entrainment of transcriptional systems to periodic inputs. PLoS Comput Biol 6(4)

    Google Scholar 

  20. Scardovi L, Arcak M, Sontag E (2010) Synchronization of interconnected systems with applications to biochemical networks: an input-output approach. IEEE Trans Autom Control 55(6):1367–1379

    Article  Google Scholar 

  21. Schöll E (2001) Nonlinear spatio-temporal dynamics and Chaos in Semiconductors. Cambridge University Press, Cambridge

    Google Scholar 

  22. Smith H (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Mathematical Society

    Google Scholar 

  23. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B, Biol Sci 237(641):37–72

    Article  Google Scholar 

  24. Yang XS (2003) Turing pattern formation of catalytic reaction-diffusion systems in engineering applications. Model Simul Mater Sci Eng 11(3):321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work supported in part by grants NIH 1R01GM086881 and 1R01GM100473, AFOSR FA9550-11-1-0247 and FA9550-11-1-0244, and NSF ECCS-1101876.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo D. Sontag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aminzare, Z., Shafi, Y., Arcak, M., Sontag, E.D. (2014). Guaranteeing Spatial Uniformity in Reaction-Diffusion Systems Using Weighted \(L^2\) Norm Contractions. In: Kulkarni, V., Stan, GB., Raman, K. (eds) A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9041-3_3

Download citation

Publish with us

Policies and ethics