Skip to main content

Abstract

We introduce the idea of structural analysis of biological network models. In general, mathematical representations of molecular systems are affected by parametric uncertainty: experimental validation of models is always affected by errors and intrinsic variability of biological samples. Using uncertain models for predictions is a delicate task. However, given a plausible representation of a system, it is often possible to reach general analytical conclusions on the system’s admissible dynamic behaviors, regardless of specific parameter values: in other words, we say that certain behaviors are structural for a given model. Here we describe a parameter-free, qualitative modeling framework and we focus on several case studies, showing how many paradigmatic behaviors such as multistationarity or oscillations can have a structural nature. We highlight that classical control theory methods are extremely helpful in investigating structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138(4):760–773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Prill RJ, Iglesias PA, Levchenko A (2005) Dynamic properties of network motifs contribute to biological network organization. Public Libr Sci Biol 3(11):e343

    Google Scholar 

  3. Kwon YK, Cho KH (2008) Quantitative analysis of robustness and fragility in biological networks based on feedback dynamics. Bioinformatics 24(7):987–994

    Article  CAS  PubMed  Google Scholar 

  4. Gómez-Gardenes J, Floría LM (2005) On the robustness of complex heterogeneous gene expression networks. Biophys Chem 115:225–229

    Article  PubMed  Google Scholar 

  5. Gorban A, Radulescu O (2007) Dynamical robustness of biological networks with hierarchical distribution of time scales. IET Syst Biol 1(4):238–246

    Article  CAS  PubMed  Google Scholar 

  6. Kartal O, Ebenhöh O (2009) Ground state robustness as an evolutionary design principle in signaling networks. Public Libr Sci One 4(12):e8001

    Google Scholar 

  7. Aldana M, Cluzel P (2003) A natural class of robust networks. Proc Nat Acad Sci USA 100(15):8710–8714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Tian T (2004) Robustness of mathematical models for biological systems. ANZIAM J 45:C565–C577

    Google Scholar 

  9. Shinar G, Milo R, Martìnez MR, Alon U (2007) Input–output robustness in simple bacterial signaling systems. Proc Nat Acad Sci USA 104:19931–199935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Shinar G, Feinberg M (2010) Structural sources of robustness in biochemical reaction networks. Science 327(5971):1389–1391

    Article  CAS  PubMed  Google Scholar 

  11. Feinberg M (1987) Chemical reaction network structure and the stability of complex isothermal reactors I. The deficiency zero and deficiency one theorems. Chem Eng Sci 42:2229–2268

    Article  CAS  Google Scholar 

  12. Sontag E (2007) Monotone and near-monotone biochemical networks. Syst Synth Biol 1:59–87

    Article  PubMed Central  PubMed  Google Scholar 

  13. Angeli D, Ferrell JE, Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Nat Acad Sci USA 101(7):1822–1827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jacquez J, Simon C (1993) Qualitative theory of compartmental systems. Soc Ind Appl Math Rev 35:43–79

    Google Scholar 

  15. Nikolov S, Yankulova E, Wolkenhauer O, Petrov V (2007) Principal difference between stability and structural stability (robustness) as used in systems biology. Nonlinear Dyn, Psychol, Life Sci 11(4):413–433

    Google Scholar 

  16. Blanchini F, Franco E (2011) Structurally robust biological networks. Bio Med Central Syst Biol 5:74

    Google Scholar 

  17. Abate A, Tiwari A, Sastry S (2007) Box Invariance for biologically-inspired dynamical systems. In: Proceedings of the IEEE conference on decision and control, pp 5162–5167

    Google Scholar 

  18. El-Samad H, Prajna S, Papachristodoulou A, Doyle J, Khammash M (2006) Advanced methods and algorithms for biological networks analysis. Proc IEEE 94(4):832–853

    Article  Google Scholar 

  19. De Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9:67–103

    Article  PubMed  Google Scholar 

  20. Alon U (2006) An introduction to systems biology: design principles of biological circuits. Chapman and Hall/CRC, UK, USA

    Google Scholar 

  21. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  CAS  PubMed  Google Scholar 

  22. Goldbeter A, Gérard C, Gonze D, Leloup JC, Dupont G (2012) Systems biology of cellular rhythms. FEBS Lett 586:2955–2965

    Article  CAS  PubMed  Google Scholar 

  23. Ackermann J, Wlotzka B, McCaskill JS (1998) In vitro DNA-based predator-prey system with oscillatory kinetics. Bull Math Biol 60(2):329–354

    Article  CAS  Google Scholar 

  24. Balagadde FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol 4. http://dx.doi.org/10.1038/msb.2008.24

  25. Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Nat Acad Sci USA 97(9):4649–4653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Drengstig T, Ueda HR, Ruoff P (2008) Predicting perfect adaptation motifs in reaction kinetic networks. J Phys Chem B 112(51):16752–16758

    Article  CAS  PubMed  Google Scholar 

  27. Santos SDM, Verveer PJ, Bastiaens PIH (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9(3):324–330

    Article  CAS  PubMed  Google Scholar 

  28. Franco E, Blanchini F (2012) Structural properties of the MAPK pathway topologies in PC12 cells. J Math Biol

    Google Scholar 

  29. Vilar JMG, Guet C, Leibler S (2003) Modeling network dynamics: the lac operon, a case study. J Cell Biol 161(3):471–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Blanchini F, Miani S (2008) Set-theoretic methods in control, Vol 22 of Systems and Control: Foundations and Applications. Birkhäuser, Boston

    Google Scholar 

  31. Ortega R, Campos J (1995) Some applications of the topological degree to stability theory. In: Topological methods in differential equations and inclusions. Kluwer Academic Publishing, Dordrecht, pp 377–409

    Google Scholar 

  32. Hofbauer J (1990) An index theorem for dissipative semiflows. Rocky Mt J Math 20(4):1017–1031

    Article  Google Scholar 

  33. Meiss J (2007) Differential dynamical systems. SIAM

    Google Scholar 

  34. Ambrosetti A, Prodi G (1995) A primer of nonlinear analysis. SIAM

    Google Scholar 

  35. Smith HL (2008) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. Am Math Soc

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blanchini, F., Franco, E. (2014). Structural Analysis of Biological Networks. In: Kulkarni, V., Stan, GB., Raman, K. (eds) A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9041-3_2

Download citation

Publish with us

Policies and ethics