Skip to main content

Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 40))

Summary

Cyanobacteria possess several photoprotective mechanisms involving relatively rapid (<few minutes) changes in the photosynthetic apparatus to dynamically adjust the amount of irradiance arriving at photosystem II (PS II). Photoprotection in cyanobacteria differs from that in plants and algae, with both of the latter possessing transmembrane chlorophyll- and carotenoid-binding light-harvesting complexes. Most cyanobacteria harvest light via a large extra-membrane complex, the phycobilisome (PBS) that contains blue and red phycobiliproteins. Thus far, three prominent and rapid processes have been identified that control effective PS II antenna size in cyanobacteria: state transitions, blue-green-light-induced thermal dissipation of excess energy absorbed by PBS, and PBS decoupling. While the latter two have a mostly photoprotective function, the process of state transitions also optimizes energy distribution between the two photosystems.

For blue-green-light-induced energy thermal dissipation, a water soluble photoactive Orange Carotenoid Protein (OCP) is essential. The OCP acts as a light-intensity sensor and energy-dissipation-inducer and is the only photoactive protein known thus far with a carotenoid as its sensor. Strong blue-green light induces structural changes in the OCP that lead to the formation of its “red-active form”. The red OCP, by interacting with the PBS core, increases thermal energy dissipation at the level of antenna and decreases the energy arriving at reaction centers. To recover full antenna (light-harvesting) capacity under low light conditions, a second protein is required, the “Fluorescence Recovery Protein” (FRP) that plays a key role in dislodging the red OCP protein from the PBS and accelerates OCP conversion to the inactive orange form. In this chapter, we review the current understanding of the mechanism of OCP-mediated fluorescence and energy dissipation in cyanobacteria.

Despite decades of research on state transitions in cyanobacteria, the underlying mechanism of this phenomenon remains unresolved. Two mechanisms of state transitions occurring at low light intensities have been suggested for cyanobacteria. In the first, a physical movement of PBS or PS I monomers leads to redistribution of energy absorbed by PBS between PS II and PS I. In the second suggested mechanism, excitation-energy spillover regulates redistribution of absorbed light between PS II and PS I. Controversy exists as to whether state transitions involve long-range displacement of proteins (PBS, PS I) and how changes in plastoquinone redox state trigger energy redistribution between the photosystems.

Several new reports now indicate that cyanobacteria can modulate energy transfer within PBS or from PBS to PS II reaction centers. Such a “decoupling” could represent an alternative safety valve for excess energy dissipation, especially in those groups of cyanobacteria that do not possess OCP-related NPQ.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Fm, F m :

Maximal fluorescence yield (in the dark or in the presence of actinic light, resp.)

Fo, F o :

Minimal, intrinsic fluorescence yields (in the dark or in the presence of actinic light, resp.)

Fs :

Steady-state fluorescence yield in the light-acclimated state

Fv, F v :

Variable fluorescence (in the dark or in the presence of actinic light)

APC:

Allophycocyanin

Chl:

Chlorophyll

CP43:

Chlorophyll protein antenna 43 kD

CP47:

Chlorophyll protein antenna 47 kD

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea (also called Diuron)

ECN:

Echinenone

Elip:

Early light induced protein

FRAP:

Fluorescence recovery after photobleaching

FRP:

Fluorescence recovery protein

hECN:

3-hydroxy-echinenone

Hlip:

High-light induced protein

ICT:

Intramolecular charge transfer

IsiA:

Iron-induced light harvesting protein in cyanobacteria

LCM :

Phycobilisome core-membrane linker polypeptide (Anchor polypeptide LCM) ApcE

NPQ:

Non-photochemical quenching of chlorophyll excited state

OCP:

Orange carotenoid protein

PBS:

Phycobilisome(s)

PC:

Phycocyanin

PE:

Phycoerythrin

PEC:

Phycoerythrocyanin

PQ:

Plastoquinone

PQH2 :

Plastoquinol

PS I:

Photosystem I

PS II:

Photosystem II

PsbU:

Subunit of the oxygen evolving complex of PS II

QA :

The first (primary) plastoquinone electron acceptor of PS II

QB :

The second (secondary) plastoquinone electron acceptor of PS II

qP:

Photochemical quenching

RC:

Reaction center

ROS:

Reactive oxygen species

RpaC:

Regulator of phycobilisome association C protein

References

  • Adams WW III, Demmig-Adams B, Lange OL (1993) Carotenoid composition and metabolism in green and blue-green algal lichens in the field. Oecologia 94:576–584

    Google Scholar 

  • Adams WW III, Muller O, Cohu CM, Demmig-Adams B (2013) May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynth Res 117:31–44

    CAS  PubMed  Google Scholar 

  • Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15–32

    CAS  PubMed  Google Scholar 

  • Ajlani G, Vernotte C (1998) Deletion of the PB-loop in the L-CM subunit does not affect phycobilisome assembly or energy transfer functions in the cyanobacterium Synechocystis sp. PCC6714. Eur J Biochem 257:154–159

    CAS  PubMed  Google Scholar 

  • Allahverdiyeva Y, Ermakova M, Eisenhut M, Zhang P, Richaud P, Hagemann M, Cournac L, Aro E-M (2011) Interplay between flavodiiron proteins and photorespiration in Synechocystis sp. PCC 6803. J Biol Chem 286:24007–24014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allen JF, Mullineaux CW (2004) Probing the mechanism of state transitions in oxygenic photosynthesis by chlorophyll fluorescence spectroscopy, kinetics and imaging. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 663–678

    Google Scholar 

  • Allen JF, Sanders CE, Holmes NG (1985) Correlation of membrane-protein phosphorylation with excitation-energy distribution in the cyanobacterium Synechococcus PCC6301. FEBS Lett 193:271–275

    CAS  Google Scholar 

  • Aoki M, Katoh S (1982) Oxidation and reduction of plastoquinone by photosynthetic and respiratory electron transport in a cyanobacterium Synechococcus sp. Biochim Biophys Acta 682:307–314

    Google Scholar 

  • Arteni AA, Ajlani G, Boekema EJ (2009) Structural organisation of phycobilisomes from Synechocystis sp strain PCC6803 and their interaction with the membrane. Biochim Biophys Acta 1787:272–279

    CAS  PubMed  Google Scholar 

  • Aspinwall CL, Sarcina M, Mullineaux CW (2004) Phycobilisome mobility in the cyanobacterium Synechococcus sp PCC7942 is influenced by the trimerisation of photosystem I. Photosynth Res 79:179–187

    CAS  PubMed  Google Scholar 

  • Ashby MK, Mullineaux CW (1999) The role of ApcD and ApcF in energy transfer from phycobilisomes to PSI and PSII in a cyanobacterium. Photosynth Res 61:169–179

    CAS  Google Scholar 

  • Bailey S, Mann NH, Robinson C, Scanlan DJ (2005) The occurrence of rapidly reversible non-photochemical quenching of chlorophyll a fluorescence in cyanobacteria. FEBS Lett 579:275–280

    CAS  PubMed  Google Scholar 

  • Bald D, Kruip J, Rögner M (1996) Supramolecular architecture of cyanobacterial thylakoid membranes: how is the phycobilisome connected with the photosystems? Photosynth Res 49:103–118

    CAS  PubMed  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79:4352–4356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berera R, Herrero C, van Stokkum IH, Vengris M, Kodis G, Palacios RE, van Amerongen H, van Grondelle R, Gust D, Moore TA, Moore AL, Kennis JT (2006) A simple artificial light-harvesting dyad as a model for excess energy dissipation in oxygenic photosynthesis. Proc Natl Acad Sci USA 103:5343–5348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berera R, van Stokkum IH, Gwizdala M, Wilson A, Kirilovsky D, van Grondelle R (2012) The photophysics of the orange carotenoid protein, a light-powered molecular switch. J Phys Chem 116:2568–2574

    CAS  Google Scholar 

  • Berman-Frank I, Lundgren P, Chen YB, Kupper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537

    CAS  PubMed  Google Scholar 

  • Bernat G, Schreiber U, Sendtko E, Stadnichuk IN, Rexroth S, Rogner M, Koenig F (2012) Unique properties vs. common themes: the atypical cyanobacterium Gloeobacter violaceus PCC 7421 is capable of state transitions and blue-light-induced fluorescence quenching. Plant Cell Physiol 53:528–542

    CAS  PubMed  Google Scholar 

  • Bhaya D, Dufresne A, Vaulot D, Grossman A (2002) Analysis of the hli gene family in marine and freshwater cyanobacteria. FEMS Microbiol Lett 215:209–219

    CAS  PubMed  Google Scholar 

  • Bibby TS, Nield J, Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412:743–745

    CAS  PubMed  Google Scholar 

  • Biggins J, Bruce D (1989) Regulation of excitation-energy transfer in organisms containing phycobilins. Photosynth Res 20:1–34

    CAS  PubMed  Google Scholar 

  • Blot N, Mella-Flores D, Six C, Le Corguille G, Boutte C, Peyrat A, Monnier A, Ratin M, Gourvil P, Campbell DA, Garczarek L (2011) Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress. Plant Physiol 156:1934–1954

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK, Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412:745–748

    CAS  PubMed  Google Scholar 

  • Bonaventura C, Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189:366–383

    CAS  PubMed  Google Scholar 

  • Boulay C, Abasova L, Six C, Vass I, Kirilovsky D (2008) Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria. Biochim Biophys Acta 1777:1344–1354

    CAS  PubMed  Google Scholar 

  • Boulay C, Wilson A, D’Haene S, Kirilovsky D (2010) Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proc Natl Acad Sci USA 107:11620–11625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruce D, Biggins J (1985) Mechanisms of the light-state transition in photosynthesis. 77-K linear dichroism of Anacystis nidulans in state-1 and state-2. Biochim Biophys Acta 810:295–301

    CAS  Google Scholar 

  • Bruce D, Brimble S, Bryant DA (1989) State transitions in a phycobilisome-less mutant of the cyanobacterium Synechococcus sp PCC 7002. Biochim Biophys Acta 974:66–73

    CAS  PubMed  Google Scholar 

  • Burnap RL, Troyan T, Sherman LA (1993) The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp PCC 7942 (Cp43) is encoded by the isiA gene. Plant Physiol 103:893–902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cadoret JC, Rousseau B, Perewoska I, Sicora C, Cheregi O, Vass I, Houmard J (2005) Cyclic nucleotides, the photosynthetic apparatus and response to a UV-B stress in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 280:33935–33944

    CAS  PubMed  Google Scholar 

  • Campbell D, Hurry V, Clarke AK, Gustafsson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Capuano V, Braux AS, Demarsac NT, Houmard J (1991) The anchor polypeptide of cyanobacterial phycobilisomes – molecular characterization of the Synechococcus sp. PCC6301 apce gene. J Biol Chem 266:7239–7247

    CAS  PubMed  Google Scholar 

  • Capuano V, Thomas JC, Demarsac NT, Houmard J (1993) An in vivo approach to define the role of the LCM, the key polypeptide of cyanobacterial phycobilisomes. J Biol Chem 268:8277–8283

    CAS  PubMed  Google Scholar 

  • Chábera P, Durchan M, Shih PM, Kerfeld CA, Polívka T (2010) Excited-state properties of the 16 kDa red carotenoid protein from Arthrospira maxima. Biochim Biophys Acta 1807:30–35

    PubMed  Google Scholar 

  • Cseh Z, Rajagopal S, Tsonev T, Busheva M, Papp E, Garab G (2000) Thermooptic effect in chloroplast thylakoid membranes. Thermal and light stability of pigment arrays with different levels of structural complexity. Biochemistry 39:15250–15257

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III, Czygan F-C, Schreiber U, Lange OL (1990) Differences in the capacity for radiationless energy dissipation in green and blue-green algal lichens associated with differences in carotenoid composition. Planta 180:582–589

    Google Scholar 

  • Dominy PJ, Williams WP (1987) The role of respiratory electron flow in the control of excitation-energy distribution in blue-green-algae. Biochim Biophys Acta 892:264–274

    CAS  Google Scholar 

  • Dong C, Zhao J (2008) ApcD is required for state transition but not involved in blue-light induced quenching in the cyanobacterium Anabaena sp. PCC7120. Chin Sci Bull 53:3422–3424

    CAS  Google Scholar 

  • Dong CX, Tang AH, Zhao JD, Mullineaux CW, Shen GZ, Bryant DA (2009) ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp PCC 7002. Biochim Biophys Acta 1787:1122–1128

    Google Scholar 

  • El Bissati K, Delphin E, Murata N, Etienne A, Kirilovsky D (2000) Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: involvement of two different mechanisms. Biochim Biophys Acta 1457:229–242

    PubMed  Google Scholar 

  • El-Mohsnawy E, Kopczak MJ, Schlodder E, Nowaczyk M, Meyer HE, Warscheid B, Karapetyan NV, Rogner M (2010) Structure and function of intact photosystem 1 monomers from the cyanobacterium Thermosynechococcus elongatus. Biochemistry 49:4740–4751

    CAS  PubMed  Google Scholar 

  • Emlyn-Jones D, Ashby MK, Mullineaux CW (1999) A gene required for the regulation of photosynthetic light harvesting in the cyanobacterium Synechocystis 6803. Mol Microbiol 33:1050–1058

    CAS  PubMed  Google Scholar 

  • Folea IM, Zhang P, Aro E-M, Boekema EJ (2008) Domain organization of photosystem II in membranes of the cyanobacterium Synechocystis PCC6803 investigated by electron microscopy. FEBS Lett 582:1749–1754

    CAS  PubMed  Google Scholar 

  • Fork DC, Mohanty P (1986) Fluorescence and other characteristics of blue-green algae (cyanobacteria), red algae and cryptomonads. In: Govindjee, Amesz J, Fork DC (eds) Light Emission by Plants and Bacteria. Academic Press, Orlando, pp 451–496

    Google Scholar 

  • Fromme P, Jordan P, Krauss N (2001) Structure of photosystem I. Biochim Biophys Acta 1507:5–31

    CAS  PubMed  Google Scholar 

  • Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B, Hagemann M (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 6:2733–2745

    CAS  PubMed  Google Scholar 

  • Gantt E, Conti SF (1966) Phycobiliprotein localization in algae. Brookhaven Symp Biol 19:393–405

    CAS  PubMed  Google Scholar 

  • Glazer AN (1984) Phycobilisome – a macromolecular complex optimized for light energy-transfer. Biochim Biophys Acta 768:29–51

    CAS  Google Scholar 

  • Glazer AN (1989) Light guides – directional energy-transfer in a photosynthetic antenna. J Biol Chem 264:1–4

    CAS  PubMed  Google Scholar 

  • Glazer AN, Bryant DA (1975) Allophycocyanin b (lambdamax 671, 618 nm) – new cyanobacterial phycobiliprotein. Arch Microbiol 104:15–22

    CAS  PubMed  Google Scholar 

  • Gorbunov MY, Kuzminov FI, Fadeev VV, Kim JD, Falkowski PG (2011) A kinetic model of non-photochemical quenching in cyanobacteria. Biochim Biophys Acta 1807:1591–1599

    CAS  PubMed  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gwizdala M, Wilson A, Kirilovsky D (2011) In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the orange carotenoid protein in Synechocystis PCC 6803. Plant Cell 23:2631–2643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gwizdala M, Wilson A, Omairi-Nasser A, Kirilovsky D (2013) Characterization of the Synechocystis PCC 6803 fluorescence recovery protein involved in photoprotection. Biochim Biophys Acta 1827:348–354

    CAS  PubMed  Google Scholar 

  • Harnischfeger G, Codd GA (1977) Liquid nitrogen fluorescence studies of the photosynthetic apparatus of blue-green algae. Br Phycol J 12:225–232

    Google Scholar 

  • Havaux M, Guedeney G, He Q, Grossman AR (2003) Elimination of high-light-inducible polypeptides related to eukaryotic chlorophyll a/b-binding proteins results in aberrant photoacclimation in Synechocystis PCC6803. Biochim Biophys Acta 1557:21–33

    CAS  PubMed  Google Scholar 

  • Havaux M, Guedeney G, Hagemann M, Yeremenko N, Matthijs HCP, Jeanjean R (2005) The chlorophyll-binding protein IsiA is inducible by high light and protects the cyanobacterium Synechocystis PCC6803 from photooxidative stress. FEBS Lett 579:2289–2293

    CAS  PubMed  Google Scholar 

  • He Q, Dolganov N, Björkman O, Grossman AR (2001) The high light-inducible polypeptides in Synechocystis PCC6803. Expression and function in high light. J Biol Chem 276:306–314

    CAS  PubMed  Google Scholar 

  • Hernandez-Prieto MA, Tibiletti T, Abasova L, Kirilovsky D, Vass I, Funk C (2011) The small CAB-like proteins of the cyanobacterium Synechocystis sp. PCC 6803: their involvement in chlorophyll biogenesis for photosystem II. Biochim Biophys Acta 1807:1143–1151

    CAS  PubMed  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holt TK, Krogmann DW (1981) A carotenoid-protein from cyanobacteria. Biochim Biophys Acta 637:408–414

    CAS  Google Scholar 

  • Huang CH, Yuan XL, Zhao FD, Bryant DA (2003) Kinetic analyses of state transitions of the cyanobacterium Synechococcus sp PCC 7002 and its mutant strains impaired in electron transport. Biochim Biophys Acta 1607:121–130

    CAS  PubMed  Google Scholar 

  • Hwang HJ, Nagarajan A, McLain A, Burnap RL (2008) Assembly and disassembly of the photosystem II manganese cluster reversibly alters the coupling of the reaction center with the light-harvesting phycobilisome. Biochemistry 47:9747–9755

    CAS  PubMed  Google Scholar 

  • Ivanov AG, Krol M, Sveshnikov D, Selstam E, Sandstrom S, Koochek M, Park YI, Vasilev S, Bruce D, Oquist G, Huner NPA (2006) Iron deficiency in cyanobacteria causes monomerization of photosystem I trimers and reduces the capacity for state transitions and the effective absorption cross section of photosystem I in vivo. Plant Physiol 141:1436–1445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jallet D, Gwizdala M, Kirilovsky D (2012) ApcD, ApcF and ApcE are not required for the orange carotenoid protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803. Biochim Biophys Acta 1817:1418–1427

    CAS  PubMed  Google Scholar 

  • Jeanjean R, Zuther E, Yeremenko N, Havaux M, Matthijs HC, Hagemann M (2003) A photosystem 1 psaFJ-null mutant of the cyanobacterium Synechocystis PCC 6803 expresses the isiAB operon under iron replete conditions. FEBS Lett 549:52–56

    CAS  PubMed  Google Scholar 

  • Joshua S, Mullineaux CW (2004) Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol 135:2112–2119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joshua S, Mullineaux CW (2005) The rpaC gene product regulates phycobilisome-photosystem II interaction in cyanobacteria. Biochim Biophys Acta 1709:58–68

    CAS  PubMed  Google Scholar 

  • Joshua S, Bailey S, Mann NH, Mullineaux CW (2005) Involvement of phycobilisome diffusion in energy quenching in cyanobacteria. Plant Physiol 138:1577–1585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaňa R (2013) Mobility of photosynthetic proteins. Photosynth Res 116:465–479

    PubMed  Google Scholar 

  • Kaňa R, Prášil O, Komárek O, Papageorgiou GC, Govindjee (2009a) Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp (PCC 7942). Biochim Biophys Acta 1787:1170–1178

    PubMed  Google Scholar 

  • Kaňa R, Prášil O, Mullineaux CW (2009b) Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted. FEBS Lett 583:670–674

    PubMed  Google Scholar 

  • Kaňa R, Kotabová E, Komárek O, Šedivá B, Papageorgiou GC, Govindjee, Prášil O (2012a) The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochim Biophys Acta 1817:1237–1247

    PubMed  Google Scholar 

  • Kaňa R, Kotabová E, Sobotka R, Prášil O (2012b) Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae. PLoS One 7:e29700

    PubMed Central  PubMed  Google Scholar 

  • Karapetyan NV, Holzwarth AR, Rogner M (1999) The photosystem I trimer of cyanobacteria: molecular organization, excitation dynamics and physiological significance. FEBS Lett 460:395–400

    CAS  PubMed  Google Scholar 

  • Kerfeld CA, Sawaya MR, Brahmandam V, Cascio D, Ho KK, Trevithick-Sutton CC, Krogmann DW, Yeates TO (2003) The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure 11:55–65

    CAS  PubMed  Google Scholar 

  • Kirchhoff H, Haferkamp S, Allen JF, Epstein DBA, Mullineaux CW (2008) Protein diffusion and macromolecular crowding in thylakoid membranes. Plant Physiol 146:1571–1578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirilovsky D, Kerfeld CA (2012) The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim Biophys Acta 1817:158–166

    CAS  PubMed  Google Scholar 

  • Koblizek M, Komenda J, Masojidek J (1998) State transitions in the cyanobacterium Synechococcus PCC 7942. Mobile antenna or spillover? In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Volume I–V. Kluwer Academic Publishers, Dordrecht, pp 213–216

    Google Scholar 

  • Kondo K, Geng XX, Katayama M, Ikeuchi M (2005) Distinct roles of CpcG1 and CpcG2 in phycobilisome assembly in the cyanobacterium Synechocystis sp PCC 6803. Photosynth Res 84:269–273

    Google Scholar 

  • Kondo K, Mullineaux CW, Ikeuchi M (2009) Distinct roles of CpcG1-phycobilisome and CpcG2-phycobilisome in state transitions in a cyanobacterium Synechocystis sp PCC 6803. Photosynth Res 99:217–225

    CAS  PubMed  Google Scholar 

  • Kruip J, Bald D, Boekema E, Rogner M (1994) Evidence for the existence of trimeric and monomeric photosystem I complexes in thylakoid membranes from cyanobacteria. Photosynth Res 40:279–286

    CAS  PubMed  Google Scholar 

  • Kruip J, Karapetyan NV, Terekhova IV, Rogner M (1999) In vitro oligomerization of a membrane protein complex – liposome-based reconstitution of trimeric photosystem I from isolated monomers. J Biol Chem 274:18181–18188

    CAS  PubMed  Google Scholar 

  • Kupper H, Ferimazova N, Šetlík I, Berman-Frank I (2004) Traffic lights in Trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. Plant Physiol 135:2120–2133

    PubMed Central  PubMed  Google Scholar 

  • Kupper H, Andresen E, Wiegert S, Šimek M, Leitenmaier B, Šetlík I (2009) Reversible coupling of individual phycobiliprotein isoforms during state transitions in the cyanobacterium Trichodesmium analysed by single-cell fluorescence kinetic measurements. Biochim Biophys Acta 1787:155–167

    PubMed  Google Scholar 

  • Kuzminov FI, Karapetyan NV, Rakhimberdieva MG, Elanskaya IV, Gorbunov MY, Fadeev VV (2012) Investigation of OCP-triggered dissipation of excitation energy in PSI/PSII-less Synechocystis sp. PCC 6803 mutant using non-linear laser fluorimetry. Biochim Biophys Acta 1817:1012–1021

    CAS  PubMed  Google Scholar 

  • Lao KQ, Glazer AN (1996) Ultraviolet-B photodestruction of a light-harvesting complex. Proc Natl Acad Sci USA 93:5258–5263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laudenbach DE, Straus NA (1988) Characterization of a cyanobacterial iron stress-induced gene similar to psbC. J Bacteriol 170:5018–5026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemeille S, Rochaix JD (2010) State transitions at the crossroad of thylakoid signalling pathways. Photosynth Res 106:33–46

    CAS  PubMed  Google Scholar 

  • Liu LN, Elmalk AT, Aartsma TJ, Thomas JC, Lamers GEM, Zhou BC, Zhang YZ (2008) Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study. PloS One 3:e3134

    PubMed Central  PubMed  Google Scholar 

  • Liu T, Shuai Y, Zhou H (2011) Purification, crystallization and preliminary X-ray diffraction of fluorescence recovery protein from Synechocystis PCC 6803. Acta Crystallogr Sect F: Struct Biol Cryst Commun 67:1627–1629

    CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2007) Lipids in photosystem II: interactions with protein and cofactors. Biochim Biophys Acta 1767:509–519

    CAS  PubMed  Google Scholar 

  • Ma WM, Ogawa T, Shen YG, Mi HL (2007) Changes in cyclic and respiratory electron transport by the movement of phycobilisomes in the cyanobacterium Synechocystis sp strain PCC 6803. Biochim Biophys Acta 1767:742–749

    CAS  PubMed  Google Scholar 

  • Mao HB, Li GF, Ruan X, Wu QY, Gong YD, Zhang XF, Zhao NM (2002) The redox state of plastoquinone pool regulates state transitions via cytochrome b6f complex in Synechocystis sp. PCC 6803. FEBS Lett 519:82–86

    CAS  PubMed  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    CAS  PubMed  Google Scholar 

  • Manodori A, Melis A (1985) Phycobilisome-photosystem II association in Synechococcus 6301 (Cyanophyceae). FEBS Lett 181:79–82

    CAS  Google Scholar 

  • McConnell MD, Koop R, Vasil’ev S, Bruce D (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol 130:1201–1212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melis A, Mullineaux CW, Allen JF (1989) Acclimation of the photosynthetic apparatus to photosystem I or photosystem II light – evidence from quantum yield measurements and fluorescence spectroscopy of cyanobacterial cells. Z Naturforsch C 44:109–118

    CAS  Google Scholar 

  • Mimuro M (2004) Photon capture, excitation migration and trapping and fluorescence emission in cyanobacteria and red algae. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 173–195

    Google Scholar 

  • Minagawa J (2011) State transitions-the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807:897–905

    CAS  PubMed  Google Scholar 

  • Mullineaux CW (1992) Excitation-energy transfer from phycobilisomes to photosystem I in a cyanobacterium. Biochim Biophys Acta 1100:285–292

    CAS  Google Scholar 

  • Mullineaux CW (1994) Excitation-energy transfer from phycobilisomes to photosystem I in a cyanobacterial mutant lacking photosystem II. Biochim Biophys Acta 1184:71–77

    CAS  Google Scholar 

  • Mullineaux CW (1999) The thylakoid membranes of cyanobacteria: structure, dynamics and function. Aust J Plant Physiol 26:671–677

    CAS  Google Scholar 

  • Mullineaux CW (2008a) Factors controlling the mobility of photosynthetic proteins. Photochem Photobiol 84:1310–1316

    CAS  PubMed  Google Scholar 

  • Mullineaux CW (2008b) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95:175–182

    CAS  PubMed  Google Scholar 

  • Mullineaux CW, Allen JF (1986) The state-2 transition in the cyanobacterium Synechococcus-6301 can be driven by respiratory electron flow into the plastoquinone pool. FEBS Lett 205:155–160

    CAS  Google Scholar 

  • Mullineaux CW, Allen JF (1990) State 1-State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between photosystems I and II. Photosynth Res 23:297–311

    CAS  PubMed  Google Scholar 

  • Mullineaux CW, Emlyn-Jones D (2005) State transitions: an example of acclimation to low-light stress. J Exp Bot 56:389–393

    CAS  PubMed  Google Scholar 

  • Mullineaux CW, Holzwarth AR (1991) Kinetics of excitation-energy transfer in the cyanobacterial phycobilisome-photosystem II complex. Biochim Biophys Acta 1098:68–78

    CAS  Google Scholar 

  • Mullineaux CW, Sarcina M (2002) Probing the dynamics of photosynthetic membranes with fluorescence recovery after photobleaching. Trends Plant Sci 7:237–240

    CAS  PubMed  Google Scholar 

  • Mullineaux CW, Boult M, Sanders CE, Allen JF (1986) Fluorescence induction transients indicate altered absorption cross-section during light-state transitions in the cyanobacterium Synechococcus 6301. Biochim Biophys Acta 851:147–150

    CAS  Google Scholar 

  • Mullineaux CW, Tobin MJ, Jones GR (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390:421–424

    CAS  Google Scholar 

  • Muramatsu M, Hihara Y (2012) Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses. J Plant Res 125:11–39

    CAS  PubMed  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172:242–251

    CAS  PubMed  Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohad I, Berg A, Berkowicz SM, Kaplan A, Keren N (2011) Photoinactivation of photosystem II: is there more than one way to skin a cat? Physiol Plant 142:79–86

    CAS  PubMed  Google Scholar 

  • Olive J, Mbina I, Vernotte C, Astier C, Wollman FA (1986) Randomization of the EF particles in thylakoid membranes of Synechocystis-6714 upon transition from state I to state II. FEBS Lett 208:308–312

    CAS  Google Scholar 

  • Olive J, Ajlani G, Astier C, Recouvreur M (1997) Ultrastructure and light adaptation of phycobilisome mutants of Synechocystis PCC 6803. Biochim Biophys Acta 1319:275–282

    Google Scholar 

  • Papageorgiou GC, Govindjee (2011) Photosystem II fluorescence: slow changes – scaling from the past. J Photochem Photobiol B Biol 104:258–270

    CAS  Google Scholar 

  • Papageorgiou GC, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94:275–290

    CAS  PubMed  Google Scholar 

  • Polívka T, Kerfeld CA, Pascher T, Sundström V (2005) Spectroscopic properties of the carotenoid 3′-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima. Biochemistry 44:3994–4003

    PubMed  Google Scholar 

  • Polívka T, Chabera P, Kerfeld CA (2013) Carotenoid-protein interaction alters the S(1) energy of hydroxyechinenone in the orange carotenoid protein. Biochim Biophys Acta 1827:248–254

    PubMed  Google Scholar 

  • Pospíšil P (2012) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim Biophys Acta 1817:218–231

    PubMed  Google Scholar 

  • Punginelli C, Wilson A, Routaboul JM, Kirilovsky D (2009) Influence of zeaxanthin and echinenone binding on the activity of the orange carotenoid protein. Biochim Biophys Acta 1787:280–288

    CAS  PubMed  Google Scholar 

  • Rakhimberdieva MG, Boichenko VA, Karapetyan NV, Stadnichuk IN (2001) Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis. Biochemistry 40:15780–15788

    CAS  PubMed  Google Scholar 

  • Rakhimberdieva MG, Stadnichuk IN, Elanskaya IV, Karapetyan NV (2004) Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett 574:85–88

    CAS  PubMed  Google Scholar 

  • Rakhimberdieva MG, Bolychevtseva YV, Elanskaya IV, Karapetyan NV (2007a) Protein-protein interactions in carotenoid triggered quenching of phycobilisome fluorescence in Synechocystis sp. PCC 6803. FEBS Lett 581:2429–2433

    CAS  PubMed  Google Scholar 

  • Rakhimberdieva MG, Vavilin DV, Vermaas WF, Elanskaya IV, Karapetyan NV (2007b) Phycobilin/chlorophyll excitation equilibration upon carotenoid-induced non-photochemical fluorescence quenching in phycobilisomes of the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1767:757–765

    CAS  PubMed  Google Scholar 

  • Rakhimberdieva MG, Elanskaya IV, Vermaas WFJ, Karapetyan NV (2010) Carotenoid-triggered energy dissipation in phycobilisomes of Synechocystis sp. PCC 6803 diverts excitation away from reaction centers of both photosystems. Biochim Biophys Acta 1797:241–249

    CAS  PubMed  Google Scholar 

  • Rakhimberdieva MG, Kuzminov FI, Elanskaya IV, Karapetyan NV (2011) Synechocystis sp. PCC 6803 mutant lacking both photosystems exhibits strong carotenoid-induced quenching of phycobilisome fluorescence. FEBS Lett 585:585–589

    CAS  PubMed  Google Scholar 

  • Redlinger T, Gantt E (1982) A M(r) 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc Natl Acad Sci USA 79:5542–5546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rinalducci S, Hideg E, Vass I, Zolla L (2006) Effect of moderate UV-B irradiation on Synechocystis PCC 6803 biliproteins. Biochem Biophys Res Commun 341:1105–1112

    CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP (2009) Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth Res 99:173–183

    CAS  PubMed  Google Scholar 

  • Sah JF, Krishna KB, Srivastava H, Mohanty P (1998) Effects of ultraviolet-B radiation on phycobilisomes of Synechococcus PCC 7942: alterations in conformation and energy transfer characteristics. Biochem Mol Biol Int 44:245–257

    CAS  PubMed  Google Scholar 

  • Sarcina M, Tobin MJ, Mullineaux CW (2001) Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942 – effects of phycobilisome size, temperature, and membrane lipid composition. J Biol Chem 276:46830–46834

    CAS  PubMed  Google Scholar 

  • Satoh K, Fork DC (1983) The relationship between State-2 to State-1 transitions and cyclic electron flow around photosystem 1. Photosynth Res 4:245–256

    CAS  Google Scholar 

  • Scherer S (1990) Do photosynthetic and respiratory electron-transport chains share redox proteins? Trends Biochem Sci 15:458–462

    PubMed  Google Scholar 

  • Schluchter WM, Shen GH, Zhao JD, Bryant DA (1996) Characterization of psaI and psaL mutants of Synechococcus sp strain PCC 7002: a new model for state transitions in cyanobacteria. Photochem Photobiol 64:53–66

    CAS  PubMed  Google Scholar 

  • Schreiber U, Endo T, Mi HL, Asada K (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse method – particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36:873–882

    CAS  Google Scholar 

  • Scott M, McCollum C, Vasil’ev S, Crozier C, Espie GS, Krol M, Huner NPA, Bruce D (2006) Mechanism of the down regulation of photosynthesis by blue light in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 45:8952–8958

    CAS  PubMed  Google Scholar 

  • Sherman LA, Meunier P, Colon-Lopez MS (1998) Diurnal rhythms in metabolism: a day in the life of a unicellular, diazotrophic cyanobacterium. Photosynth Res 58:25–42

    CAS  Google Scholar 

  • Sinha RP, Lebert M, Kumar A, Kumar HD, Hader DP (1995) Spectroscopic and biochemical analyses of UV effects on phycobiliproteins of Anabaena sp and Nostoc carmium. Bot Acta 108:87–92

    CAS  Google Scholar 

  • Six C, Joubin L, Partensky F, Holtzendorff J, Garczarek L (2007) UV-induced phycobilisome dismantling in the marine picocyanobacterium Synechococcus sp WH8102. Photosynth Res 92:75–86

    CAS  PubMed  Google Scholar 

  • Sonoike K (2011) Photoinhibition of photosystem I. Physiol Plant 142:56–64

    CAS  PubMed  Google Scholar 

  • Stadnichuk IN, Yanyushin MF, Maksimov EG, Lukashev EP, Zharmukhamedov SK, Elanskaya IV, Paschenko VZ (2012) Site of non-photochemical quenching of the phycobilisome by orange carotenoid protein in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1917:1436–1445

    Google Scholar 

  • Stoitchkova K, Zsiros O, Jávorfi T, Páli T, Andreeva A, Gombos Z, Garab G (2007) Heat- and light-induced reorganizations in the phycobilisome antenna of Synechocystis sp. PCC 6803. Thermo-optic effect. Biochim Biophys Acta 1767:750–756

    CAS  PubMed  Google Scholar 

  • Sutter M, Wilson A, Leverenz RL, Lopez-Igual R, Thurotte A, Salmeen AE, Kirilovsky D, Kerfeld CA (2013) Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proc Natl Acad Sci USA 110:10022–10027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamary E, Kiss V, Nevo R, Adam Z, Bernat G, Rexroth S, Rogner M, Reich Z (2012) Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. Biochim Biophys Acta 1817:319–327

    CAS  PubMed  Google Scholar 

  • Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes: the early observations. Photosynth Res 76:197–205

    CAS  Google Scholar 

  • Theiss C, Schmitt FJ, Pieper J, Nganou C, Grehn M, Vitali M, Olliges R, Eichler HJ, Eckert HJ (2011) Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina. J Plant Physiol 168:1473–1487

    CAS  PubMed  Google Scholar 

  • Tian L, van Stokkum IH, Koehorst RB, Jongerius A, Kirilovsky D, van Amerongen H (2011) Site, rate, and mechanism of photoprotective quenching in cyanobacteria. J Am Chem Soc 133:18304–18311

    CAS  PubMed  Google Scholar 

  • Tian L, Gwizdala M, van Stokkum IH, Koehorst RB, Kirilovsky D, van Amerongen H (2012) Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys J 102:1692–1700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tikkanen M, Grieco M, Nurmi M, Rantala M, Suorsa M, Aro E-M (2012) Regulation of the photosynthetic apparatus under fluctuating growth light. Philos Trans R Soc B-Biol Sci 367:3486–3493

    CAS  Google Scholar 

  • Tyystjarvi E (2008) Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev 252:361–376

    CAS  Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the photosystem II complex. Biochim Biophys Acta 1817:209–217

    CAS  PubMed  Google Scholar 

  • Vavilin DV, Vermaas WF (2002) Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria. Physiol Plant 115:9–24

    CAS  PubMed  Google Scholar 

  • Vavilin D, Yao D, Vermaas W (2007) Small Cab-like proteins retard degradation of photosystem II-associated chlorophyll in Synechocystis sp. PCC 6803: kinetic analysis of pigment labeling with 15N and 13C. J Biol Chem 282:37660–37668

    CAS  PubMed  Google Scholar 

  • Veerman J, Bentley FK, Eaton-Rye JJ, Mullineaux CW, Vasil’ev S, Bruce D (2005) The PsbU subunit of photosystem II stabilizes energy transfer and primary photochemistry in the phycobilisome – photosystem II assembly of Synechocystis sp PCC 6803. Biochemistry 44:16939–16948

    CAS  PubMed  Google Scholar 

  • Vicente JB, Gomes CM, Wasserfallen A, Teixeira M (2002) Module fusion in an A-type flavoprotein from the cyanobacterium Synechocystis condenses a multiple-component pathway in a single polypeptide chain. Biochem Biophys Res Commun 294:82–87

    CAS  PubMed  Google Scholar 

  • Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson A, Boulay C, Wilde A, Kerfeld CA, Kirilovsky D (2007) Light-induced energy dissipation in iron-starved cyanobacteria: roles of OCP and IsiA proteins. Plant Cell 19:656–672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson A, Punginelli C, Gall A, Bonetti C, Alexandre M, Routaboul JM, Kerfeld CA, van Grondelle R, Robert B, Kennis JTM, Kirilovsky D (2008) A photoactive carotenoid protein acting as light intensity sensor. Proc Natl Acad Sci USA 105:12075–12080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson A, Kinney JN, Zwart PH, Punginelli C, D’Haene S, Perreau F, Klein MG, Kirilovsky D, Kerfeld CA (2010) Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria. J Biol Chem 285:18364–18375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson A, Punginelli C, Couturier M, Perrau F, Kirilovsky D (2011) Essential role of two tyrosines and two tryptophans on photoprotection activity of the orange carotenoid protein. Biochim Biophys Acta 1807:293–301

    CAS  PubMed  Google Scholar 

  • Wilson A, Gwizdala M, Mezzetti A, Alexandre M, Kerfeld CA, Kirilovsky D (2012) The essential role of the N-terminal domain of the orange carotenoid protein in cyanobacterial photoprotection: importance of a positive charge for phycobilisome binding. Plant Cell 24:1972–1983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu YP, Krogmann DW (1997) The orange carotenoid protein of Synechocystis PCC 6803. Biochim Biophys Acta 1322:1–7

    CAS  PubMed  Google Scholar 

  • Wyman M, Gregory RPF, Carr NG (1985) Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain dc2. Science 230:818–820

    CAS  PubMed  Google Scholar 

  • Xu H, Vavilin D, Funk C, Vermaas W (2004) Multiple deletions of small Cab-like proteins in the cyanobacterium Synechocystis sp. PCC 6803: consequences for pigment biosynthesis and accumulation. J Biol Chem 279:27971–27979

    CAS  PubMed  Google Scholar 

  • Xu XL, Yang SZ, Xie J, Zhao JQ (2012) Kinetics and dynamics for light state transition in cyanobacterium Spirulina platensis cells. Biochem Biophys Res Commun 422:233–237

    CAS  PubMed  Google Scholar 

  • Yang SZ, Su ZQ, Li H, Feng JJ, Xie J, Xia AD, Gong YD, Zhao JQ (2007) Demonstration of phycobilisome mobility by the time- and space-correlated fluorescence imaging of a cyanobacterial cell. Biochim Biophys Acta 1767:15–21

    CAS  PubMed  Google Scholar 

  • Yeremenko N, Kouril R, Ihalainen JA, D’Haene S, van Oosterwijk N, Andrizhiyevskaya EG, Keegstra W, Dekker HL, Hagemann M, Boekema EJ, Matthijs HCP, Dekker JP (2004) Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. Biochemistry 43:10308–10313

    CAS  PubMed  Google Scholar 

  • Yousef N, Pistorius EK, Michel KP (2003) Comparative analysis of idiA and isiA transcription under iron starvation and oxidative stress in Synechococcus elongatus PCC 7942 wild-type and selected mutants. Arch Microbiol 180:471–483

    CAS  PubMed  Google Scholar 

  • Zhang R, Li H, Xie J, Zhao JQ (2007) Estimation of relative contribution of “mobile phycobilisome” and “energy spillover” in the light-dark induced state transition in Spirulina platensis. Photosynth Res 94:315–320

    CAS  PubMed  Google Scholar 

  • Zhang P, Allahverdiyeva Y, Eisenhut M, Aro E-M (2009) Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803. PLoS One 4:e5331

    PubMed Central  PubMed  Google Scholar 

  • Zhang PP, Eisenhut M, Brandt AM, Carmel D, Silen HM, Vass I, Allahverdiyeva Y, Salminen TA, Aro E-M (2012) Operon flv4-flv2 provides cyanobacterial photosystem II with flexibility of electron transfer. Plant Cell 24:1952–1971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao JD, Shen GZ, Bryant DA (2001) Photosystem stoichiometry and state transitions in a mutant of the cyanobacterium Synechococcus sp PCC 7002 lacking phycocyanin. Biochim Biophys Acta 1505:248–257

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

OP and RK have been supported by projects Algatech administered by the Ministry of Education of the Czech republic, and GACR P501/12/G055 and P501/12/0304 financed by the Czech Science Foundation. DK has been supported by grants from Agence Nationale de la Recherche (ANR, Cyanoprotect Project), Centre Nationale de Recherche Scientifique (CNRS), Commisariat à l’énergie atomique et aux energies alternatives (CEA) and HARVEST EU FP7 Marie Curie Research Training Network. The authors thank Conrad W. Mullineaux for his valuable comments during revision of this chapter. We also acknowledge the comments of the editors (Govindjee, William Adams and Barbara Demmig-Adams) during the preparation of the final version.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diana Kirilovsky or Ondřej Prášil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kirilovsky, D., Kaňa, R., Prášil, O. (2014). Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_22

Download citation

Publish with us

Policies and ethics